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Thesis overview

is document constitutes my PhD thesis at Department of Computer Science, Uni-
versity of Copenhagen. e subject of the thesis is statistical analysis of functional data,
and the main goal of the enclosed work is to go beyond the typical simple analyses
of curve data, and open up the possibility of doing model-based statistical analysis of
complex functional objects. e functional aspect of data naturally complicate statistical
analysis; as opposed to conventional data analysis, geometric information has to be taken
into account, and potentially enormous data sizes has to be handled. e contributions
of this thesis are both theoretical, computational, and practical, and it offers solutions
to some of the mentioned problems in various relevant cases.

During my PhD studies I have worked on a variety of topics. In particular, I have
done much work on optical flow estimation and distributed video coding. Rather than
writing an overview of my research output during my PhD studies, and the spurious
relations between the different work, I have chosen to write a thesis on the area which
I find most interesting, and on which I will continue my future research. us, optical
flow estimation and video coding will not be considered in much detail in this thesis.

Lars Lau Raket
26 March 2014
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Summary

I propose a direction it the field of statistics which I denote functional object analysis.
is subfields considers the analysis of functional objects defined on continuous domains.
In this setting I will focus on model-based statistics, with a particularly emphasis on
mixed-effect formulations, where the observed functional signal is assumed to consist
of both fixed and random functional effects. is thesis takes the initial steps toward
the development of likelihood-based methodology for functional objects. I first consider
analysis of functional data defined on high-dimensional Euclidean spaces under the effect
of additive spatially correlated effects, and then move on to consider how to include
data alignment in the statistical model as a nonlinear effect under additive correlated
noise. In both cases, I will give directions on how to generalize the methodology to
more complex data setups. Finally, I consider extensions and future directions.

Contributions
e main methodological contributions of this thesis are as follows:

• An operator approximation framework for doing inference in linear functional
mixed-effects models (Rakêt & Markussen 2014).

• A description, and source code for doing efficient massively parallel inference in
functional mixed-effects models (Rakêt & Markussen 2014).

• A model for doing likelihood inference for functional data under the effect of,
possibly random, alignment variation (Rakêt, Sommer & Markussen 2014).
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Chapter 1

Functional data typologies

1.1 Introduction
e objective of functional data analysis is to analyze data of a functional nature—data
that are discrete observations of functional objects. Traditionally, the focus of functional
data analysis has been on curve data (Ramsay & Silverman 2005), but the toolbox that
has been developed for curve data has only had a limited success for more complex
functional data. As a result of this focus on curves, some authors have come to regard
functional data analysis the study of curve data, and nothing else. In this process of
distantiation, analysis of more complex functional objects are often assigned to other
subdisciplines with fundamentally different methodology.

In the spirit of unification, Wang & Marron (2007) propose the term object-
oriented data analysis which is “the statistical analysis of populations of complex objects”.
is concept gives a valuable system for talking about analysis of complex objects and
comparing methodology for different types of objects. Its generality, however, also means
that the unifying goal is mostly achieved in terms of high-level issues, since the considered
complex objects can be of very different nature. For example, both smooth curves and
tree structures are considered as objects, even though they are fundamentally different.
Taking, for example, a stochastic point of view, the random variability in such data
types is probably not comparable. e statistical focus of object-oriented data analysis
has primarily been on exploratory analysis, with a particular focus on alternatives to
principal component analysis for complex data types (Marron & Alonso 2014). While
principal component analysis is surely one of the most valuable tools in the data analysis
toolbox, proper model-based statistical methodology for functional objects is needed for
the field to reach a mature state.

In the following chapters we will propose a line of research along a subfield of
object-oriented data analysis; a field which we will denote functional object analysis. is
subfield considers the analysis of functional objects defined on continuous domains. In
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2 CHAPTER 1. FUNCTIONAL DATA TYPOLOGIES

this setting we will particularly focus on mixed-effect formulations, where the observed
functional signal is assumed to consist of both fixed and random functional effects.

e move from curves to more complex functional objects represents a major increase
in mathematical complexity. But not only that; with the increasing sophistication
of measuring devices, data of functional objects today represents some some of the
largest datasets available. Neuroimaging devices are capable of producing image volumes
with hundreds of millions of voxels, and from microscopes to space telescopes, image
resolutions in the gigapixel range are seeing the light of day. us, the question of
efficient computation is of key importance in functional object analysis.

In the remainder of this chapter we will review different types of functional data
and corresponding models.

1.2 Hierarchies of functional data
e broadly defined objective of functional data analysis—to analyze functional data–
means that the field encompasses a large number of subfields. Our focus is on statistical
methods, so we assume that data contains some degree of variation that, from a suitable
viewpoint, can be considered stochastic. Furthermore, we will mainly consider data
where a fixed effect of interest is available, and thus we will pay less attention to for
example reconstruction of high-dimensional objects from low-dimensional projections.
Finally, the main focus will be on functional data analyses where one of the goals is to
infer a functional signal of interest.

In this section we will propose different hierarchies of functional data based on: the
geometric and topological structure of the underlying functional object; the modeling
of functional effects; and the models of uncertainty in the data.

1.2.1 Geometric and topological data hierarchies
Let θ : D → V be a functional object of interest. e geometric and topological
properties of domain D and codomain V provide a natural hierarchy of functional data.

e main focus of functional data analysis has been on analyzing curve data, which
also yields the simplest mathematical analysis. e typical examples of such data are
temporal acceleration signals (Kneip & Ramsay 2008, Srivastava et al. 2011) such as the
ones in Figure 1.1 (a), and (derivatives of ) growth curves (Ramsay & Silverman 2005),
an example of which is given in Figure 1.1 (b).

From the perspective of the functional effect of interest θ, the data complexity can
be extended both in terms of the structure of the domain and the codomain of the
underlying functional effect.

e differences in data complexity has resulted in a division of the types of functional
objects that are analyzed in different branches of science. While an extensive literature on
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Figure 1.1: (a) 20 replications of the acceleration signal measured at the tip of a pen
writing a signature, and (b) growth velocities for 39 male subjects in the Berkeley growth
study as a function of age. e dashed black curve shows the pointwise average.

classical statistical analysis of curve data has been generated (Ramsay & Silverman 2005,
Ferraty & Vieu 2006, Horváth & Kokoszka 2012), the literature on statistical models for
spatial and volumetric data is much sparser, and an abundance of open problems for such
data exists (Ferraty & Vieu 2006, Chapter 14). On the other hand, functional objects
such as image volumes, and shapes have received considerable attention in computational
anatomy and the mathematical branches of computer vision (Grenander & Miller 1998,
Paragios et al. 2006). e methodology used in different fields are, however, often not
directly compatible. Where statistical analysis is typically focused on the discrete set of
observations, the approaches used to analyze complex functional objects often focus on
the structure of the underlying function spaces. ese differences, and the benefits of
the different approaches will be discussed in Section 1.2.4.

In the following paragraphs we will review different types of functional objects.

Space curve data e perhaps simplest extension of curve data consists in extending
the dimension of the value space, for example by considering effects θ : R→ Rq. is
type of data typically arises when one measures several quantities at the same time. A
classical example is the San Diego Children’s Hospital gait data, which consists of knee
and hip angle measurements from 39 children during a gait cycle (Olshen et al. 1989).
is data is shown in Figure 1.2 (a). Another typical example of this type of data is
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Figure 1.2: (a) Knee hip gait data, and (b) Repeated 3D acceleration signals from two
different trotting horses.

spatial acceleration curves θ : R→ R3 measured using an accelerometer. Figure 1.2 (b)
shows an example of such data obtained from two different horses, that has been used
for classifying equine lameness (Sørensen et al. 2012).

e availability of space curve data from accelerometers and gyrometers have increased
tremendously during recent years due to the presence of such devices in a wide variety
of consumer electronics. As a result, this type of data is no longer restricted to expensive
controlled experiments. An example of this is the action dataset generated by McCall
et al. (2012) using smartphones attached to the belt of participants performing specific
actions. is data is used by Tucker et al. (2013) who classify actions based on the
observed functional signal, using Fisher-Rao distance between the samples.

A further complication of space curve data happens if the data naturally takes values
in a smooth manifoldM, which is for example the case for data describing the position
of a GPS tracker on the globe over time, in which case M = S2. More elaborate
manifolds may arise naturally when data is constrained in space. Consider for example
human motion analysis using skeletal models (Figure 1.3). If data is given as joint-
position in end-effector space (Hauberg et al. 2012), the constraint that bone lengths
remain fixed over the timespan of the data acquisition, makes the space of possible
values a smooth manifold.

Spatial data Extending the functional effect to a multidimensional domain presents a
significant leap in complexity, analogously to the increased complexity encountered when
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θ : R→M

Figure 1.3: Skeletal model for human motion modeling in end-effector space (from
Hauberg et al. 2012).

going from ordinary to partial differential equations. Common examples of such data
are planar data θ : R2 → Rq, for example geodata over small areas where the curvature
of the globe can be ignored, electrophoresis images, and image volumes θ : R3 → Rq.
A pair of 2D electrophoresis gels and an MRI slice of a human brain along with its
segmented reconstruction can be found in Figure 1.4.

Imaging technologies have been used in scientific fields for several decades, but the
literature on modeling of spatial data in a stochastic setting is surprisingly underdevel-
oped. While classical statistical models are being used for analyzing e.g. neuroimage
data (Worsley & Friston 1995), the vast data sizes encountered in this field often render
direct analysis infeasible.

Data with topological structure As a result of the cyclic nature of the gait data in
Figure 1.2, one would expect the underlying curve representing the gait cycle to be
closed. us, it is natural to consider models where the fixed effect is defined on
the circle, that is θ : S1 → Rq. Other data types are naturally defined on domains
with topological structure. For example, global measurements on the earth are naturally
defined on a spherical domain. Such global measurements are typically of meteorological
nature, for example temperature data (Lindgren et al. 2011) and ozone concentration
measurements (Bolin & Lindgren 2011).

For planar shape data, such as outlines of cells or anatomical objects, the topological
restriction that outlines are non-intersecting may be imposed. Furthermore, it is often
natural to model shapes modulo translation, rotation, reflection, and possibly scaling
(Dryden & Mardia 1998). ese restrictions naturally complicate analysis of shape
data, which is of course additionally hampered when the dimension of the domain is
increased, as is the case when one consider shape analysis of the cortical surface extracted
from MRI image data (Figure 1.4 (b)), where the surface can be considered a function
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(a) θ : R2 → R (b) θ : R3 → R

Figure 1.4: (a) Set of two 2D electrophoresis gels, and (b) slice of MRI volume of
human brain with segmented reconstruction.

(a) (b) (c)

Figure 1.5: (a) shape of outer ear with cylindrical topology (from Darkner et al. 2007),
(b) and (c) human cochlea along with its natural domain (from Charon 2013).¹

defined on the two-sphere θ : S2 → R3. Shape data on nonspherical domains have not
yet received much attention. Examples of such data are the shape of the outer ear in
Figure 1.5 (a) which has open cylindrical topology, and the shape of the human cochlea
in Figure 1.5 (b), which has the topology of a tri-torus.

¹Data courtesy of Pr. Jose Braga from Université Paul Sabatier in Toulouse, Jean-Luc Kahn, curator at
Institut d’anatomie normale et pathologique in Strasbourg, and Dr. Stanley Durrleman from Institut du
cerveau et de la moëlle épinière in Paris
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1.2.2 Modeling of functional effects
Functional effects are naturally infinite-dimensional while observation numbers are always
finite. Due to this contrast between the acquired data and the object of interest, we
have to put restrictions on functional effects in order estimate the full functional objects.

e simplest type of finite dimensional representation parametrizes functional effects
in terms of all observation points, or in terms of a prespecified set of points, and
interpolates intermediate points using for example linear interpolation. While such
constructions are perhaps not the most aesthetic choice, they are often practical because
of their simplicity, and generality. On the other hand, they can be problematic when
data is not well-balanced, or when functional samples are not aligned—and well-aligned
raw data is certainly a rarity.

For noisy curve data, the widely popular smoothing spline (Wahba 1975) is one
of the earliest, and best studied models for functional effects. In generalized form, the
smoothing spline is the functional effect θ in a suitable Sobolev or Beppo-Levi space
that minimizes the penalized likelihood function

ℓ(θ) =
m∑
k=1

(y(tk)− θ(tk))
2 + λ

∫
D
∥K θ(t)∥2 dt, (1.1)

for some differential operator K . A rich theory has been developed around smoothing
splines. In particular, the problem has been considered in a reproducing kernel Hilbert
space setting, where the smoothing spline has been shown to have a sparse representation
in terms of polynomials in the null-space of the smoothing operator and Green’s functions
for the smoothing operator L = K †K (Wahba 1990). Furthermore, generalizations
to higher dimensional and spherical domains are readily available (Cox 1984, Wahba
1981). ese ideas have also been generalized to curves on surfaces (Pottmann & Hofer
2005) and functions on topologically and geometrically complex surfaces (Duchamp &
Stuetzle 2003).

Much work has used alternative finite-dimensional representations of functional ef-
fects in terms of basis functions (Ramsay & Silverman 2005). Popular choices of bases
include the Fourier system, B-splines, and wavelets. On top of the regularization caused
by the finite dimensional representation, one may penalize smoothness of the solution
further (Ramsay & Silverman 2005, Hastie et al. 2009). One of the most popular basis
function representations for curve data is the penalized spline, or P-spline, which is the
result of finding θ as the combination of the B-splines in the given basis that minimizes
the penalized likelihood function (1.1).

From the point of view of doing statistical analysis of more complex objects, such
as three-dimensional shapes, discrete interpretable representation are very valuable since
they may reduce both the mathematical complexity of the analysis and the computational
burden. In this respect, deformable shape models based on medial skeletal representa-
tions have been a successful alternative to conventional descriptions (Pizer et al. 2005).
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Recently, a new type of skeletal model was proposed by Pizer et al. (2013). ese
so-called s-reps are developed such that the representation is consistent across all shapes
in the population at hand, which in turn makes the representation more suited for
statistical analysis. is consistency also makes the representation a promising option
for mixed-effect modeling of shape data. Modeling of complex functional objects is
however still an underdeveloped area with many open problems.

1.2.3 Uncertainty structure
e canonical model of functional data analysis assumes that m noisy discrete observa-
tions yi = yi(tk)1≤k≤ni

are made of a deterministic functional object θ, according to
the statistical model

yi(t) = θ(t) + εi(t), (1.2)

where εi is a zero-mean white noise process with possibly zero variance.
Let us first restrict ourselves to the case of curve data θ : R → R in order to

introduce the fundamental classes of uncertainty that we will consider. Curve data is
of course both the simplest and most studied case of model (1.2). Classical examples
such as the acceleration signals and growth velocity curves in Figure 1.1 have often been
analyzed using model (1.2). A closer inspection of these two datasets, however, reveal
two elements that are not accounted for by the model.

For the signature data, the deviations around the mean curve seem to be systematic
for the different repetitions. A more proper statistical modeling would assume that
sample i included a serially correlated effect xi that models the systematic amplitude
variation

yi(t) = θ(t) + xi(t) + εi(t). (1.3)

Model (1.3) is a simple example of a functional mixed-effects model. A wide variety of
models in this class have been considered in the literature. Wang (1998) proposes a class
of models where the fixed effect θ is modeled using a smoothing spline, and the random
effects xi are assumed to be realizations of zero-mean Gaussian process with pre-specified
parametric covariance structure. Guo (2002) develops functional mixed-effects models
where both fixed and random effects are modeled using smoothing splines, which, using
the equivalence between smoothing spline models and Gaussian process models, can be
considered a special case of the model of Wang (1998). In this class of models, Guo
(2002) introduces some valuable computational tools. In a similar fashion, Chen &
Wang (2011) consider modeling of fixed and random effects using P-splines. A recent
development is the functional mixed-effect framework proposed by Markussen (2013). In
this framework fixed effects are modeled using a pointwise representation which makes
it possible to efficiently approximate likelihood calculations using operator calculus.
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An alternative approach to functional mixed-effect models considers the problem in a
nonparametric setting, where no distributional or parametric assumptions are made on
the random effects. An example of this approach is given by Boularan et al. (1994), who
consider modeling of growth curves, assuming only that population and individual effects
are twice differentiable, and propose an estimation scheme based on kernel smoothing.
For a recent review of linear functional mixed-effects models we refer to Liu & Guo
(2012).

A closer inspection of the growth velocity data reveals another feature that is not
modeled by the mixed-effect model (1.3): there seems to be phase variability—variability
in the time domain. e overall shape of the growth velocity curves is consistent, but
not aligned along the age-axis. Such alignment effects are present in almost all functional
data, and can also be spotted in the signature data, although to a lesser extent.

As can be seen for the growth velocity data in Figure 1.1, ignoring phase variability
will inevitably lead to overly smooth estimates of fixed effects (dashed curve), that lack
the details of the individual samples. e typical solution to the problem consists in
warping data as a preprocessing step, and then carry out analysis on the processed data.
From a statistical point of view, this approach can however be problematic. Considering
the growth data, the differences in growth velocity peaks across the different subjects
can be ascribed to a large number of factors such as genetics, nutrition, and exposure to
hormone-disrupting chemicals. us, it is natural to consider the alignment differences
a random effect, fully comparable to the serially correlated effects of model (1.3). Pre-
alignment of data will thus exclude this stochastic element from the analysis, which may
bias the resulting estimates and conclusions. us, it is natural to consider the nonlinear
functional mixed-effects models

yi(t) = θ(vi(t)) + xi(t) + εi(t) (1.4)

and

yi(t) = θ(vi(t)) + xi(vi(t)) + εi(t) (1.5)

where v is a sample-specific (possibly stochastic) warping function.
In model (1.4) the warping function is assumed to only affect the fixed effect θ. is

model is relevant when the amplitude variation xi is assumed to follow the non-warped
domain of the experiment, which generally happens when the amplitude variation can
be ascribed to sources that are independent of the functional signal. e alternative
model (1.5) should be used when the amplitude variation xi is tied to the functional
signal, for example when xi models biological variation around θ.

Verzelen et al. (2012) propose an interesting alternative to the mixed-effects models
considered here. ey propose to model curve data by a nonlinear differential equation
of the form

θ′i(t) = f(t, θi(t)) + x(t)
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Figure 1.6: Simulated light curves from the Strong Lens Time Delay Challenge.

where x is a zero-mean stochastic process. In this model, in addition to the fixed effects
θi describing the individual samples, one wants to estimate the nonlinear dynamics in
terms of the fixed functional effect f . e generalization and adaption of this idea
to the more complex types of data described in the previous sections could provide a
valuable model for exploratory analysis. is type of approach does however require
that a sufficiently high number of samples are available.

In the following paragraphs we will consider how the geometric and topological
properties of the functional object θ plays a central role in the models one has to
consider, and how the nonlinear functional mixed-effects models (1.4) and (1.5) can
sometimes be related to these complex data situations.

Invariant data transformations Consider the two simulated light curves from the Strong
Lens Time Delay Challenge (Dobler et al. 2013) in Figure 1.6. is type of data from
gravitational lens systems can be used to infer important cosmological parameters, if one
can identify the slight shifts that are present between the curves. Due to magnification,
the observed curves have a difference in scale that cannot be ignored in the analysis.

e idea of analyzing data using methods build around invariance principles is
getting increasingly popular. For the light curves in Figure 1.6, one could apply a scale-
invariation transformation of data such as the census transform or the complete rank
transform, and then use the transformed data to infer the shift (Demetz et al. 2013).
Such tools are valuable for exploratory analysis because they are widely applicable,
but one has to keep in mind that invariances come at a price in terms of discarded
information. From the model-based point of view considered here, the proper model
for the data should simply include a curve specific scaling parameter of the fixed and
possibly random effects.

Many types of invariant data transformations naturally occur. Data transformations
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are often encountered when one considers vector-valued functional data. Changing
the dimension of the codomain is typically straight forward in terms of the statistical
analysis—in models (1.4) and (1.5), one need to specify a correlation structure between
the dimensions of the serially correlated effects xi, but since the curve is still indexed by
a one dimensional variable, the task of registering the curves is essentially unchanged.
A multi-dimensional codomains however opens up the possibility of new types of data
effects. For example, the placement and orientation of an accelerometer may influence
the collected data, and thus it will sometimes be natural to consider rotations of the
fixed and serially correlated effects in value space to align samples.

e main idea in the formulation of the statistical models considered here, is that
data transformation should be part of the model—we should include a rotation of the
mean acceleration curve in value space toward the samples, rather than rotating the
individual noisy samples toward the mean.

Restricted codomains Consider a model with a functional effect θ : Rd →M, where
the codomain M is a smooth Riemannian submanifold of Rq. Suppose we consider
skeletal motion data in end-effector space (Figure 1.3), but instead of human motion,
the observations are of a robot repeating the same motion a number of times, with
independent identically distributed zero-mean observation noise. is data setup belongs
in the canonical model (1.2), and the restriction of the codomain to the manifold M
represents information that will surely improve the estimation of θ at a limited cost
in complexity. On the other hand, when we are constructing models for data with
serially correlated effects, which is the case in human motion data, one has to carefully
consider the nature of the random effects. One could consider model (1.5), in which θ
represents the mean motion in M, xi represents the serially correlated deviation from
θ, vi represents the difference in timing between the different repetitions, and εi is
measurement noise. For such data, it is natural to assume that the systematic deviation
xi of the underlying motion θ takes place on the manifold M. is means that both
the underlying effect θ and the observed effect θ+ xi should be contained in M. is
intricate dependence of xi on the fixed effect θ, makes it difficult to derive a reasonable
stochastic model for such data. In this case, it is more natural to consider a completely
nonlinear model of the form

yi(t) = xθ
i (vi(t)) + εi(t). (1.6)

where xθ
i is anM-valued stochastic process with mean θ. Constructing general stochastic

processes on manifolds, and doing inference in the resulting models can however be
difficult.

Another example of restricted codomains comes from the warping functions in
models (1.4) and (1.5), which are often assumed to be diffeomorphisms. is assumption
is natural in many cases. Consider for example the signature data in Figure 1.1 (a).
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Each acceleration peak corresponds to a specific feature of a letter, and these should
come in the correct order to produce the signature. Data warping methods that ensure
diffeomorphic warping functions have received considerable attention in recent years.
Joshi & Miller (2000) consider landmark matching where diffeomorphisms are generated
using a transport equation. e interesting idea behind this method is that not only
the data domain is considered continuous, but also the path of the deformation. In the
formulation of Joshi & Miller (2000), the data warping is considered a fixed functional
parameter, however as noted by the authors, the spatial regularization at each time
point along the path of the diffeomorphism gives the velocity fields the local structure
of Gaussian random fields. If one considers formulations of random diffeomorphic
warping functions, however, things get even more complex. For this reason, random
diffeomorphisms have received a limited amount of attention from an applied point of
view: Nielsen et al. (2008) consider so-called Brownian warps as a least-committed prior
for Bayesian image registration. ey derive the local distribution of the Jacobian of the
Brownian warp in 2D, and describe how to use the method for aligning images. An
alternative approach is given by Markussen (2007) who derives a stochastic transport
equation for the same problem, and proves the equivalence of this method, and the
methods of Joshi & Miller (2000) and Nielsen et al. (2008). A recent development is
the second-order model of Vialard (2013) that generates random diffeomorphisms that
are smooth along the path of evolution. While the mentioned works do take some
steps toward defining proper statistical models for data requiring diffeomorphic warping,
there is still a long way to practically applicable methods that can be used for parameter
estimation and model validation.

Structured domains When building statistical models for functional data the biggest
increase in mathematical complexity occurs when going from one-dimensional domains
with trivial topology, to domains with higher dimension and nontrivial topology. When
going from D = R to D = Rd d ≥ 2, the number of well-established models for
random effect xi is significantly reduced, due to the limited practical knowledge about
high-dimensional random fields compared to one-dimensional stochastic processes. e
practical implication of this is that random effects are customarily assumed to be Gaussian
with Matérn covariances. e complications are further increased when considering
domains with topological structure. While random fields on spheres have received a
fair amount of attention (see for example Fisher 1993), domains like the tri-torus used
for the cochlea surfaces in Figure 1.5 represents a great challenge in terms of defining
natural random fields. is complexity is even further increased if we want to model
biological variation around a mean shape θ by means of a random field xi, subject to
the natural constraint that the observed shapes (including biological variation) do no
self-intersect.

Likelihood-based solutions for data of this complexity does not seem likely in the
near future, however, Charon (2013) analyze the cochlea data in a large deformations
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by diffeomorphisms setting. Similarly to the previous described link betwen the works
of Joshi & Miller (2000) and Markussen (2007), it will perhaps be possible to derive a
relation to a statistical model based on stochastic differential equations for such data.

1.2.4 Practical and computational approaches to func-
tional data analysis

e role of a statistical model and its ability to model a given phenomenon is often
described by an overly negative George Box quote. When we develop statistical models
it should be with the focus of making models that are good approximations of the
observed phenomenon. But in this respect, we may add another set of objectives,
namely simplicity and interpretability of the models. Often one can discard some of
the complex data structure in the modeling, with no cost in terms of the approximative
power of the model. For example, Hobolth & Jensen (2000) model cell shapes with a
parametric fixed effect and a random effect modeled by a Gaussian process that changes
the cell shape in the normal direction of the estimated fixed effect. is model seems to
fit the considered data well, but if one were to insist that simulations from the model
would never cause self-intersections of the shapes, the mathematical complexity would
explode without any essential gain in accuracy.

An important aspect of statistical analysis is the ability to do significance testing.
To derive reasonable testing procedures, we need a model that is a good description of
the data, and a test statistic that can be used to evaluate a hypotheses. e descriptive
quality of the model is important because the structure of uncertainty in the data is
used to evaluate the probability of a given observation under the model.

Suppose we want to model planar shapes using a linear mixed-effects model similar
to (1.3), and suppose that the natural sample variation xi along the mean outline is
modeled by a Gaussian process. If the estimated variance parameters of xi corresponds to
a process that produce self-intersecting shape samples with an overwhelming probability,
the usefulness of the model is limited from a testing perspective, since the probabilities
are clearly not assigned properly. On the other hand, when this is not the case, such a
model may serve as a good approximation.

When it comes to test statistics, the standard choice is (restricted) likelihood-ratio
tests. If one uses pointwise representations of fixed effects in the linear models described
in the previous section, classical asymptotic results from multivariate analysis can be
used to derive the approximate distribution of the likelihood-ratio test statistics. is
approximation may however be poor because of the large number of parameters. Building
on the same classical foundation, Cuevas et al. (2004) consider an anova test for
functional data in the setting of model (1.2), and propose a numerical procedure to
handle the asymptotic distribution. In the general linear mixed-effect setting, Antoniadis
& Sapatinas (2007) develop a testing procedure that uses wavelet decomposition of both
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fixed and random effects. ere is an ongoing development of testing procedures in
functional data analysis, but in applications, hypothesis tests based on functional models
are rarely used. Furthermore, there is still a need for large scale simulation studies to
assess the quality of current testing procedures.

Continuous or Discrete?

Functional data has a built in duality; data consist of discrete observations, but arise from
an infinite-dimensional space. e statistical community has traditionally had a very
strict focus on the discrete observations. is focus makes sense from a philosophical
point of view: the observation noise of model (1.2) is generally tied to the act of doing
measurements, and is thus discrete in nature. e negative log likelihood function of
model (1.2) under the assumption of zero-mean Gaussian noise with variance σ2 is

ℓ(σ2, θ) =
n

2
logσ2 +

1

2σ2

n∑
k=1

(y(tk)− θ(tk))
2, θ ∈H . (1.7)

In contrast to the discrete viewpoint of the observation model, analyses that are based
on continuous formulations are often considered in other fields. e negative log
likelihood function (1.7) cannot be directly used as it goes to infinity with n, and thus
needs renormalization to be used in a continuous setting. An energy formulation for
recovering the function θ, similar to (1.7) is of the form

E(θ) =

∫
D
(y(t)− θ(t))2 dt, (1.8)

which is then minimized using the discrete observations y(t1), . . . , y(tm), for example
by interpolating unknown values. e minimizer θ of the negative log likelihood and
the energy E clearly converge as the sampling rate goes to infinity, but the energy is not
normalized by means of the variance, which in turn means that one cannot do direct
parameter estimation from the energy. In this simple case, the solution is of course
straightforward, but for more general models, linking likelihood functions to variational
formulations can be difficult.

We have previously seen that model (1.2) is too simple to describe typical data effects,
and both likelihood-based analyses and analyses based on continuous energy formulations
includes one or more regularization terms of the form

λ

∫
D
∥K θ(t)∥2 dt,

where K is a differential operator. Continuous energy formulations of this type has the
advantage that one can write up the functional derivative using calculus of variations,
and find the minimizer by solving the corresponding Euler-Lagrange equation.
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e results of the maximum likelihood estimation and energy minimization may be
quite different—in particular when data is irregularly sampled, in which case one has
to pay special attention to using a renormalization schemes that properly approximate
the variance normalization terms (Markussen 2013).

e likelihood method has the advantage that model parameters can be estimated
directly from the likelihood function, and that hypothesis tests are possible. On the
other hand, one can generally derive much faster minimization algorithms for energy
formulations, and in the case of complex data, it may be significantly easier to formulate
models in terms of data and regularization terms, rather than random effects.

Variational methods for analyzing functional data have been extensively used in dif-
ferent scientific communities, and have reached a quite mature state (Scherzer et al.
2008). e links between model-based statistical analysis of functional data and varia-
tional methods have historically only received very limited attention from the statistical
community. In recent years, however, it seems that variational methods are catching
on in statistics. Lindgren et al. (2011) use a finite element method to solve a partial
stochastic differential equation, and these ideas have been further explored by Simpson
et al. (2012a,b). On a similar node, Sangalli et al. (2013) use finite elements to ef-
ficiently estimate a spatial effect in a spatial regression model. In Chapter 2 we take
these methods one step further. In addition to estimating fixed effects and predicting
spatially correlated effects, we derive approximations for all the terms in the likelihood
function, which enables maximum likelihood estimation of parameters for very large data
sizes. is approach gives the best of both worlds: likelihood estimation of parameters
combined with fast computations, and natural representation of effects.
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Chapter 2

An operator-based approach to functional
mixed-effect models

2.1 Introduction
In this chapter we present the first paper of the thesis (Rakêt & Markussen 2014).
e paper considers spatial functional data with fixed effects θ : Rd → R corrupted
by spatially correlated noise and measurement noise. We show how the likelihood
function can be approximated using variational formulations, and describe how these
approximations can be used for doing efficient computations. We review related models,
and consider the relations to the proposed method. Finally, we use the methodology
to analyze a dataset of 28 pre-aligned 2D chromatograms, each of which has more
than 5 million observation points. A detailed description of the chromatogram warping
procedure, which is based on previous work on optical flow (Rakêt et al. 2011, Rakêt
2013), can be found in Appendix A.
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1. Introduction

During the last half century, functional data analysis has become a well-

established statistical discipline (Ramsay and Silverman, 2005; Ferraty and

Vieu, 2006; Horváth and Kokoszka, 2012). The continuous sophistication of

instruments gives rise to an increasing number of problems where functional

aspects have to be taken in to account. Statistical analysis of functional data

generally involves the ill-posed problem of inferring an infinite-dimensional

function from discrete data points. This requires some sort of regularization,

and the type of regularization is often chosen in terms of roughness penalties

that lead to sparse representations of the inferred function in terms of simple

basis functions (Wahba, 1990), thus reducing the computational complexity.

The most typical specification, however, considers the inverse regularization

process where a sparse basis is chosen explicitly for the given problem, which

may then be further regularized through a roughness penalty (Ramsay and

Silverman, 2005).

This paper takes a different path for model specification; we consider

functional mixed-effects models with random effects generated by Gaussian

processes, and present a framework that moves the calculations needed in

such analyses from the discrete domain induced by the observations to the

underlying functional domain. As a consequence it is possible to efficiently

compute the functions in question, even if the regularization does not lead

to sparse representations. The methods are based on the one-dimensional

operator approximations of Markussen (2013), and here new results and res-

olution strategies are presented for high-dimensional domains.

The functional viewpoint sheds new light on some of the current chal-

lenges in statistics (Jordan, 2011), by both reducing the computational com-

plexity of a large class of statistical problems dramatically, and at the same

time revealing a natural link between partial differential equations and a

large number of statistical models, including functional mixed-effects mod-

els, penalized likelihood, and Bayesian models.
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In addition to reducing the computational complexity, the proposed res-

olution strategies are highly parallel, and naturally suited for implementa-

tion on massively parallel processors like graphics processing units (GPUs).

While parallelization and GPUs have received some attention in the statis-

tical community in recent years, the main focus has been on parallelizing

matrix operations and sampling techniques (Suchard et al., 2010; da Silva,

2010). To our knowledge, this work marks the first attempt of actively formu-

lating solutions for classical statistical problems in a way that is particularly

beneficial for implementation on massively parallel hardware.

The proposed methods are illustrated by conducting a classical statisti-

cal analysis of a dataset of 2D chromatograms with more than 140 million

spatially correlated observations on a GPU.

2. Model and estimation

We consider spatial functional data on a domain T ⊆ Rd. Suppose we

are given k noisy vectorized functional samples y1, . . . ,yk each consisting of

n observation points. We assume that the observations are generated from

the following functional mixed-effect model

yi(t) = θe(i)(t) + xi(t) + εi(t) (1)

where e : {1, . . . , k} → {1, . . . , p} is a factor, θe(i) is the fixed functional

mean for group e(i), xi is a zero-mean Gaussian process with covariance

function τ 2G, and εi is a Gaussian white noise process with variance σ2.

A wide variety of functional mixed-effects models have previously been

considered. One of the dominant approaches is to model functional effects

using smoothing splines (Wahba, 1990). Such constructions are considered

by Wang (1998) and Guo (2002). Modeling of mixed effects in terms of pe-

nalized splines is considered by Chen and Wang (2011), and Lee et al. (2013)

propose a related method based on nested basis functions for spatial mixed-

effects models. An alternative approach to functional mixed-effect models
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considers the problem in a nonparametric setting, where no distributional

or parametric assumptions are made on the random effects. Boularan et al.

(1994) considered modeling of growth curves, assuming only that population

and individual effects were twice differentiable, and proposed kernel smooth-

ing estimates for the effects. On a similar note, Núñez-Antón et al. (1999)

considered a nonparametric three-level model and applied it to speech recog-

nition data. For the use of nonparametric statistical modeling techniques

for functional data we refer to the monograph by Ferraty and Vieu (2006),

and for a review on functional mixed-effects models we refer to Liu and Guo

(2012).

Now, let y be the concatenation of all the vectorized observations of

length N = kn. The discrete observation y generated by function evaluation

at the points t1, . . . , tn in the model (1) may be modeled by a conventional

linear mixed-effects model

y = Γθ + x+ ε, (2)

where Γ = In ⊗ Γ0 is the design matrix corresponding to the factor e and

θ ∈ Rnp is a vector of parameters describing the group mean functions point-

wise, x consists of the spatially correlated effects, x ∼ N (0, Ik ⊗ τ 2Σ) with

covariance matrix Σ =
{
G(ti, tj)

}
i,j

, and ε is independent, identically dis-

tributed Gaussian noise ε ∼ N (0, σ2IN). Since the design is constant across

all observations, i.e. given by Γ0, the fixed effect θ can be estimated point-

wise. The solution strategy presented below may also be adapted to the

situation with a low rank design matrix following Markussen (2013).

Functional mixed-effect models are typically modeled with fixed effects of

a functional nature. For simplicity, we parametrize the fixed effect with one

parameter per observation point, mimicking classical mixed-effects models.

The adaption to functional fixed effects given by a limited number of basis

functions can be done following the previously mentioned references. In par-

ticular, the computations needed for fixed effects parametrized in terms of
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smoothing splines closely follow the computations related to the spatially

correlated effect x, and the presented methods naturally extend to such

parametrizations.

The best linear unbiased prediction for the spatially correlated effects in

the model (2) is done by means of the conditional expectation (Robinson,

1991)

E [x |y ] =
(
Ik ⊗ τ 2Σ

)
V −1(y − Γθ̂), (3)

where V = σ2IN +Ik⊗τ 2Σ. The variance parameters are typically estimated

by minimizing the negative log restricted likelihood (Harville, 1977; Lee et al.,

2006)

`y(σ, τ) = log detV + log det[Γ>V −1Γ] + (y − Γθ̂)>V −1(y − Γθ̂). (4)

For later use it is noted that the last term in the likelihood function can be

written as

(y − Γθ̂)>V −1(y − Γθ̂) =
1

σ2
(y − Γθ̂)>(y − Γθ̂ − E [x |y ])

=
1

σ2
(y − Γθ̂ − E [x |y ])>(y − Γθ̂ − E [x |y ])

+
1

σ2
E [x |y ]> (y − Γθ̂ − E [x |y ]).

(5)

3. Operator approximations

For many common covariances G the underlying functional structure of

the covariance matrix Σ can be exploited, so that one may approximate

calculations involving Σ. The functional counterpart to Σ is the integral

operator G given by

G f =

∫
T

G( · , t)f(t) dt.

22 CHAPTER 2. OPERATOR-BASED MIXED-EFFECTS MODELS



To ease notation it is assumed that k = 1. The general case follows easily.

Furthermore, assume for simplicity that the observations are equidistantly

spaced within [0, 1]d. For non-equidistant observations, one can introduce a

normalization operator following Markussen (2013). Let E · : Rn → C(T ,R)

be a linear embedding of the observation space into the space of piecewise lin-

ear functions on T . For n large, one has the Riemannian sum approximation

of the integral

Σz ≈ {nG Ez(ti)}i. (6)

Assuming that G is two times continuously differentiable within the d-cubes

spanned by the observation points, the approximation error can be speci-

fied explicitly by applying the trapezoidal rule on the right-hand side inte-

grals, mimicking Proposition 1 in Markussen (2013). The error is of order∑d
i=1O(n−1i ) where ni denotes the number of sample points across data di-

mension i, i.e. n = n1 · · ·nd.
Denote by L = G −1 the precision operator corresponding to G , i.e.

L G( · , t) = δt (7)

where δt is the Dirac delta function at t. In many cases L is a differential

operator with G as its corresponding Green’s function. For a general intro-

duction to Green’s functions we refer to the monograph by Duffy (2001).

The relation between covariance functions and differential operators can be

used to approximate calculations involving the covariance matrix Σ.

First we consider the conditional expectation (3). One may rewrite the

matrix product, to get

E [x |y ] =

(
In +

σ2

τ 2
Σ−1

)−1
(y − Γθ̂).

By using the approximation (6) and the fact that inversion is a continuous

operation, one can derive (component-wise) operator approximations of the
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conditional expectation (3)

Ê [x |y ] =

(
I +

σ2

nτ 2
L

)−1
Ey−Γθ̂, (8)

which means that the conditional expectation can be approximated by apply-

ing an integral operator with smoothing kernel corresponding to the Green’s

function of I+ σ2

nτ2
L on the continuously embedded residual y−Γθ̂. As op-

posed to the original conditional expectation (3) that requires inversion of a

possibly dense covariance matrix, the operator approximation (8) require the

inversion of an operator. This may be done explicitly, and the approximation

(8) can typically be evaluated in linear time, and may in fact often be evalu-

ated at all observation points in linear time (Markussen, 2013). Furthermore,

convolving high-dimensional data with possibly non-isotropic smoothing ker-

nels can be done very efficiently on massively parallel processors (Hartung

et al., 2012).

By applying the differential operator I + σ2

nτ2
L on both sides of equation

(8) one gets that f = Ê [x |y ] is the solution to the partial differential

equation

L f =
nτ 2

σ2
(Ey−Γθ̂ − f). (9)

In general, numerical solution of the differential equation (9) is the most ef-

ficient choice for obtaining the approximated conditional expectation (8). In

particular, GPUs are very suited for efficiently solving differential equations

based on finite difference approximations (Micikevicius, 2009).

In the following, point evaluation of Ê [x |y ] will be assumed to be done

at all data points, giving a vector object directly comparable to E [x |y ].

Point evaluation is always done after applications of operators, for example

differentiation.

Considering the differential equation (9), one can derive a numerically

stable expression for the last part of the expanded quadratic term (5). By
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inserting the functional approximations of the conditional expectation in the

term and using (9), one gets that

Ê [x |y ]> (Ey−Γθ̂ − Ê [x |y ]) =
σ2

nτ 2
Ê [x |y ]>L Ê [x |y ] .

Assuming that the covariance function G is positive definite, a square root

K of L exists, such that L = K †K , which means that the last term may

also be written as a sum of squares

σ2

nτ 2
(K Ê [x |y ])>(K Ê [x |y ]).

Finally, to approximate the determinant terms in the restricted likelihood

function (4), one notes that

d

dα
log det

[
In + αΣ

]
= tr

(
(In + αΣ)−1Σ

)
,

which means that

log det[In + Σ] =

∫ 1

0

n∑
`=1

e>` (I + αΣ)−1Σe` dα,

where the vectors e` constitute an orthonormal basis for Rn. By approxi-

mating the matrix computations with their operator counterparts, one gets

that

log det[σ2In + τ 2Σ] ≈
∫ 1

0

∫
T

(
αI + σ2

nτ2
L
)−1

δt(t) dt dα + n log σ2.

The integral term integrates over a family of Green’s functions, and for many

common covariance functions G, the integral may be explicitly computed,

resulting in constant time computation of the approximated log-determinant.

The explicit link between the covariance G and the differential operator

L can be convenient in model specification. For some models, it may be

natural to start out assuming that the random effect has a specific covariance
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function, and for other it may be straightforward to specify the differential

operator.

Many well-known covariance functions G correspond to simple differential

operators L with suitable boundary conditions. This will be illustrated in

the following examples.

Example 3.1. Let T = [0, 1]d and L = ∂2t1 · · · ∂
2
td

. For homogeneous Dirich-

let boundary conditions the corresponding Green’s function is

G(t, t′) = (t1 ∧ t′1 − t1t′1) · · · (td ∧ t′d − tdt′d),

which is the covariance of the tied down Brownian bridge on T . Alterna-

tively, assuming homogeneous Dirichlet boundaries along the 0-boundaries,

and corresponding Neumann boundaries along the 1-boundaries results in

the Green’s function

G(t, t′) = (t1 ∧ t′1) · · · (td ∧ t′d),

which is the covariance of the Brownian sheet.

Other boundary conditions leads to e.g. the Brownian bridge on T .

Finally, assuming homogeneous Neumann boundary conditions may often

be a good choice from a modeling point of view, as this corresponds to a

Brownian process with a free level. Even though this will only make L and

the corresponding covariance G positive semi-definite, all calculations can be

done completely analogous to the cases where L is positive definite. ◦

Example 3.2. Let T = [0, 1]d and L = (−∆)` + ε where ∆ denotes the

Laplace operator, ε > 0, and ` ≥ 2. Under suitable boundary conditions and

with ε = 0, this class of precision operators corresponds to penalizing the

squares of derivatives (Wahba and Wendelberger, 1980), which is commonly

used for regularization.
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For Homogeneous Dirichlet boundary conditions one gets the covariance

G(t, t′) =
∞∑

i1,...,id=1

2d

π2`(i21 + · · ·+ i2d)
` + ε

d∏
j=1

sin(ijπtj) sin(ijπt
′
j). (10)

For Neumann boundaries the covariance function is similar, only with the

sine functions substituted by cosines. When ε = 0, the covariance function is

no longer positive, but the above expression is well defined, and so in practice

one may choose ε = 0.

For some choices of d and ` more compact descriptions are available

(Duffy, 2001, chap. 5). Finally it is worth noting that these Green’s functions

may take the value +∞ on the diagonal, corresponding to infinite variance.

This happens for example when d = 2 and ` = 1. ◦

Example 3.3. Let T = Rd and L = (κ2 − ∆)α/2 with free boundary

condtions. Assume that α = ν + d/2, κ > 0, and ν > 0. This choice of

precision L has the Matérn covariance function (Lindgren et al., 2011) as

its Green’s function

G(t, t′) =
‖t− t′‖v

2ν−1Γ(ν + d/2)(4π)d/2κv
Kv(κ‖t− t′‖).

◦

Example 3.4. Suppose that x from (2) is a tied down Brownian sheet on

[0, 1]2, i.e.

G((t1, t2), (t
′
1, t
′
2)) = (t1 ∧ t′1 − t1t′1)(t2 ∧ t′2 − t2t′2).

The Green’s function Gα((t1, t2), (t
′
1, t
′
2)) for the differential operator L +αI

is given by

∞∑
i=1

2 sinh(
√
α
iπ

(1− t2 ∨ t′2)) sinh(
√
α
iπ

(t2 ∧ t′2))
iπ
√
α sinh(

√
α
iπ

)
sin(iπt1) sin(iπt′1).

With this expression one can explicitly compute (8). Furthermore, one can
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derive the following log-determinant approximation

log det[σ2In + τ 2Σ] ≈ n log σ2 +
∞∑
i=1

log

(
iπσ√
nτ

sinh

(
τ
√
n

iπσ

))
(11)

which can be evaluated by cutting the sum off at some sufficiently high

value of i. This provides an interesting generalization to the known log-

determinant approximation for the Brownian bridge under Gaussian noise

(Markussen, 2013) which is

n log σ2 + log

(
σ√
nτ

sinh

(
τ
√
n

σ

))
.

Finally, due to the symmetry of the eigenfunctions of L under Dirichlet and

Neumann boundary conditions, the approximation (11) is identical to the

expression one would get with Neumann boundary conditions. ◦

Example 3.5. Assume that L = (−∆)` + ε and T = [0, 1]2 with homoge-

neous Dirichlet or Neumann boundary conditions. Using (10) the following

log-determinant approximation is easily derived

log det[σ2In + τ 2Σ] ≈ n log σ2 +
∞∑
i=1

∞∑
j=1

log

(
1 +

τ 2n

σ2

1

π2`(i2 + j2)` + ε

)
.

(12)

◦

Example 3.6. To compare the computation time of the conditional expec-

tation (3) with the approximation given by the solution of the differential

equation (9), the two solutions were calculated for m × m images. The

matrix solution (3) was calculated by efficiently inverting the matrix V in

BLAS using the Cholesky decomposition and a single thread on a 3.4 GHz

Intel Core i7. The differential equation (9) was solved using the explicit diffu-

sion scheme described in detail in Appendix A. The scheme was implemented

in CUDA C and executed on an NVIDIA GeForce GTX 680MX GPU with
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1536 CUDA cores. The runtime results, excluding the construction time for

the matrix V for the matrix approach, can be seen in Figure 1. We note that

for m = 50, the runtime of the matrix computation is a factor 1200 slower

than the solution of the differential equation. For the given observation sizes,

we note that the GPU runtimes only differ slightly, with an average runtime

increase of approximately 10% from m = 10 to m = 50 despite of the factor

25 increase in observation size. This is caused by the GPU not being fully

utilized for data sizes in the given range, and the runtime is dominated by

memory bandwidth. The runtime increase from m = 10 to m = 1000 of the

GPU implementation was found to be merely a factor 33.
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e

BLAS matrix computation GPU differential equation

Figure 1: Runtime for the prediction of the conditional expectation using respectively
the matrix formulation (3) and the differential equation (9) based on 100 replications for
m = 10, 20, 30, 40, 50.

◦

Example 3.7. To assess the quality of the approximations, observations of

tied down Brownian sheets on [0, 1]2 with added Gaussian noise have been

generated. The observation points are on an equidistant m × m grid, for

varying values of m. The parameters in terms of the model (2) were Γ = 0,
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Figure 2: Mean square error of the approximated conditional expectation (8) computed
by solving (9), based on 100 replications per m (left) and relative approximation error of
the log-determinant (right).

σ2 = 0.1, and τ 2 = 1.

Figure 2 shows the mean square error of the approximated conditional ex-

pectation (8) with respect to the original conditional expectation (3), and the

relative error of the log-determinant approximation (11). The approximated

conditional expectation was computed by solving the differential equation

(9) using the same setup as described in the previous example. The log-

determinant approximation was computed using the formula (11) where n

was replaced by n+1 in the second term to correct for the Dirichlet boundary

conditions, and the sum was cut off after 10,000 terms.

Both approximations clearly improve as m increases. In particular, it is

worth noting that the relative error of the log-determinant approximation

seems to converge faster than O(m−1). ◦

3.1. Related models

The model (2) is closely related to other types of models. In particular,

assuming that k = 1 and Γ = 0, one arrives at the classical functional data
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model (Ramsay and Silverman, 2005)

y = x+ ε. (13)

which is typically written in functional form as

y(t) = x(t) + ε(t).

One can think of the model (13) as a Bayesian model with x as the

prior of the observed function. In this model, the conditional expectation

corresponds to the Bayes estimator of the function. Alternatively one can

see the conditional expectation as the minimizer of the penalized likelihood

function

`y(x) = (y − x(ti)i)
>(y − x(ti)i) + λ

∫
T

x(t)L x(t) dt, (14)

where the λ parameter corresponds to σ2/τ2 in the mixed-effects and Bayesian

model, and x(ti)i is the column vector consisting of the function x evaluated

at the points t1, . . . , tn. In these cases one would typically estimate param-

eters by means of marginalized likelihood methods or the generalized cross

validation criterion (Craven and Wahba, 1978)

GCV(λ) =
n

(n− df(λ))2
(y − x̂λ)>(y − x̂λ),

where x̂λ is the conditional expectation (3), with λ = σ2/τ2, and df(λ) is the

trace of the matrix 1
2λ

Σ(I + 1
2λ

Σ)−1. Similarly to the calculations for the

log-determinant, one can approximate

df(λ) ≈
∫

T

G∗λ(t, t) dt,

where G∗λ is the Green’s function corresponding to the differential operator
2λ
n

L + I, and thus carry out the generalized cross validation using opera-

tor approximations. If a marginalized likelihood approach is preferred, the
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likelihood can be approximated using the already presented approximations.

In addition to the connection between the mentioned statistical models,

the differential equation (9) naturally links mathematical models governed

by this type of equation to the models described here. This in turn allows the

use of the mentioned criteria to estimate parameters in such mathematical

models.

3.2. Related work

It was noticed by Dolph and Woodbury (1952) that covariance functions

of stochastic processes and Green’s functions were related through stochastic

differential equations. The solution x to the stochastic partial differential

equation

Lx(t) = w(t), (15)

where w is Gaussian white noise and L is positive definite, is a Gaussian

random field with covariance G—the Green’s function of L . In a somewhat

similar fashion to what has been described in the present paper, Dolph and

Woodbury (1952) used this representation to pose prediction problems for

continuously observed curves as solutions to differential equations.

More recently, Lindgren et al. (2011) used the connection (15) with L =

(κ2 − ∆)α/2 as the definition of the class of Matérn fields, and derived a

computationally efficient Markov representation of the solution. In contrast

this paper poses the prediction of the corresponding stochastic differential

equation as a partial differential equation in the functional domain, and does

not use any explicit representation of the data. Because of this relation to the

stochastic differential equation formulation, the presented method can also

be generalized to domains that are smooth manifolds, by simply changing

the domain of (9), completely analogous to the mainfold generalization by

Lindgren et al. (2011). In addition, the presented method can handle a

large class of covariance functions since the presented methods only need to
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identify the corresponding differential operator and solve a partial differential

equation.

4. Example: Glyphosate data

Figure 3: Example of a chromatogram along with absorbance curves for three fixed wave-
lengths (corresponding to the dashed red lines) on log-scale.

Consider a dataset consisting of k = 28 chromatograms (yi)1≤i≤28, each

of which consists of n = 209× 24, 000 (wavelength × retention time) obser-

vations of absorbance (A.U.). The chromatograms have been generated us-

ing ultra-high-performing liquid chromatography with diode-array-detection

(Petersen et al., 2011). The subjects of the analysis are rapeseed seedlings

having been exposed to different levels of glyphosate, commonly known as

Roundup R©.

The original data have been preprocessed prior to the analysis. The chro-

matograms have been registered in retention time using a method similar to

the so-called TV-L1 optical flow algorithm (Zach et al., 2007; Rakêt et al.,

2011). First, the observations of each glyphosate-level group have been itera-

tively registered toward the group mean. Next, warping functions of all group

means toward the maximum-glyphosate-level group mean are computed. Fi-

nally, these warps are applied to the intra-group registered observations,
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such that all samples follow a similar coordinate system. For the algorithmic

details we refer to Rakêt (2013). Furthermore, the data does not have ho-

mogeneous variance; in flat regions, little or no noise is present while noise

around peaks is stronger. To alleviate this problem Gaussian noise with vari-

ance 2 · 10−4 has been added to the logarithm of the registered absorbances.

Figure 3 displays one of the preprocessed chromatograms, and from the scale

of the log absorbance it is clear that the added noise is minuscule compared

to the signal.

The logarithm of the absorbance is modeled according to (2)

log(yi + 1) = θe(i) + xi + εi (16)

where the factor e : {1, . . . , 28} → {0, 1, 5, 10, 20, 30, 50} with p = 7 levels

gives the glyphosate exposure (in µM), and each θ is 209 × 24, 000 dimen-

sional. The xis are independent 209 × 24, 000 dimensional free Brownian

sheets (i.e. n = 5, 016, 000, N = 140, 448, 000 and L = ∂2s∂
2
t with Neu-

mann boundary conditions) with variance parameter τ 2 = σ2ξ2, and the

εis are independent, identically distributed Gaussian noise εi ∼ N (0, σ2In).

Brownian sheets have folds parallel to the axes, which also carry over to the

associated posteriors (see e.g. Figure 10). This behaviour makes the Brown-

ian sheet a natural model for the present data, where responses at individual

retention times are expected to extend along wavelengths. Furthermore,

a multiplicative difference between chromatograms can be expected for this

data. This gives a constant level shift after the log transformation. The Neu-

mann boundary conditions (corresponding to a free level, cf. Example 3.1)

are then natural for the problem, since the level shift may be captured in the

prediction of the spatially correlated effects.

To approximate the restricted likelihood function (4) it is first noted that

the determinant terms can be simplified

detV = σ2N det[I + ξ2Σ]k, det[Γ>V −1Γ] = σ−2np
(
k

p

)np
det[I + ξ2Σ]−p,
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both of which are approximated using the operator approximation (11). In

the given parametrization, a closed form restricted maximum likelihood es-

timate for σ2 can be derived

σ̂2 =
1

N − np

(
(y − Γθ̂ − Ê [x |y ])>(y − Γθ̂ − Ê [x |y ])

+
1

cξ2
(K Ê [x |y ])>(K Ê [x |y ])

)
.

The conditional expectation is computed as the solution to the differential

equation (9), which is solved numerically using a finite difference approxi-

mation with a stabilized explicit diffusion scheme on a GPU. We refer to

Appendix A for the details.

The fixed effects θ0,θ1,θ5,θ10,θ20,θ30,θ50 are estimated pointwise, and

the contrasts to baseline θ0 can be found in Figure 4. Examples of the pre-

dicted spatially correlated effect can be found in Figure 5. We note that the

range of the log absorbance values in the predicted spatially correlated effect

is around one fifth of the range for the estimated fixed effect contrasts. The

estimates of the variance parameters are 91.96 and 1.363 · 10−2 respectively

for ξ and σ.

Figure 6 displays a QQ plot of the conditional residual quantiles against

normal quantiles and a scatter plot of conditional residuals against the esti-

mated fixed effects. While the QQ plot shows non-normal tail behavior, this

is caused by approximately 0.2% of the observations, and their effect on the

estimate of σ is small. The residual plot shows an unnaturally large varia-

tion of the residuals corresponding to low absorbance, and for log absorbance

levels of around 12.2. Nevertheless, these effects are again caused by very

few observations, and the vast majority of the observations, that lie between

log absorbance levels of 11.5 and 12, behave as one would expect.

Figure 7 shows the difference in log-likelihood evaluated at the maximum

likelihood estimates between the original model (16) and the six models cor-

responding to collapsing the zero-exposure group with each of the other ex-
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−2 −1 0 1

Figure 4: Differences between the estimated fixed effects θ̂1, θ̂5, θ̂10, θ̂20, θ̂30, θ̂50 and base-
line θ̂0 (from top to bottom).
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−0.4 −0.2 0.0 0.2 0.4

Figure 5: Predictions of the spatially correlated effects xi for the four observations with
glyphosate exposure level 1µM .

Figure 6: QQ plot and residual plot of a random sample consisting of 0.1% of the condi-
tional glyphosate data residuals (1,404,480 data points), with the 38 most severe outliers
removed from the residual plot. The line in the QQ plot shows the estimated standard
deviation. For the residual plot the conditional residuals are plotted against the fitted
values θ̂e(i), and the point density is indicated in blue.
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posure level groups. The likelihood has been used instead of the restricted

likelihood in order to invoke Wilk’s likelihood ratio statistic (Pawitan, 2001).

Classical asymptotical behavior would prescribe twice the difference in log-

likelihood to be approximately χ2-distributed with degrees of freedom equal

to n. In this example the test statistics of order 17 · 106 thus could be

evaluated at approximately 5 · 106 degrees of freedom. However, since the

validity of a χ2-test with this many degrees of freedom is questionable, we

have not computed p-values. However, there seems to be no doubt concern-

ing the significant difference between the exposure groups. Apart from the

1µM exposure group, that has a somewhat irregular fixed effect (Figure 4),

the log-likelihood differences behave as one would expect; differences increase

with glyphosate level. The irregularity of the 1µM group is mainly caused by

one observation with very strong peaks. The prediction of the corresponding

spatially correlated effect can be seen in Figure 5 (top left).
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Figure 7: Log-likelihood differences between the model with the marked exposure level
and zero-exposure level combined and the full model (16). The likelihood functions have
been evaluated at the maximum likelihood estimates.
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5. Example: Simulated data

In this simulation example, k = 25 images on T = [0, 1]2 sampled at

200× 200 equidistant points have been generated from the model

yi = fα(tj)j + gβi,γi(tj)j + εi, (17)

where the functions f and g at a point t = (t1, t2) are given as

fα(t1, t2) = sin(2αt1)− sin(αt1t2) cos(5t2) + t2,

gβ,γ(t1, t2) = g?β,γ(t1, t2)− E[g?β,γ(t1, t2)],

with

g?β,γ(t1, t2) =
1

2
(sin(βt1t2) cos(γt1)t

2
2 − cos(βγt2)).

Here α ∈ {1, . . . , 10} is a fixed integer, βi ∼ N (1, 4), γi ∼ N (1, 9), εi ∼
N (0, σ2In) with n = 40, 000 and variance σ2 = 0.1, and all random variables

are independent across the different samples. Images of the functions fα and

gβ,γ with different parameters can be found in figures 8 and 9.

The spatially correlated part of the model is simulated from a parametric

random effect model with two degrees of freedom, and it is investigated how

the developed model performs under misspecification. This is relevant since

one would expect the functional model to be misspecified in most real data

applications.

The parametrization and calculations from the previous example trivially

carries over to this example. Figures 10 and 11 show examples of the condi-

tional expectation under the assumption of a free Brownian sheet effect and

of an effect with biharmonic precision L = ∆∆. For the presented figures

α = 6 was used and the spatially correlated effects shown correspond to those

of Figure 9. In this setting the smoother predictions from the biharmonic

precision consistently lead to better predictions of the spatially correlated

effects. QQ plots of the conditional residuals can be found in Figure 12.

While both plots look very reasonable, it can be seen that the biharmonic
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Figure 8: The function fα for different values of α.

β = 1.77 β = 1.45 β = 3.73 β = 1.23 β = 3.82
γ = 2.17 γ = 2.61 γ = 3.19 γ = 2.84 β = 4.60
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Figure 9: The function gβ,γ with β and γ values simulated following β ∼ N (1, 4), γ ∼
N (1, 9).
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Figure 10: Predictions of the spatially correlated effects from Figure 9 in the model (17)

with α = 6 under the assumption of a free Brownian sheet effect, with ξ̂ = 0.115, along
with mean squared errors (MSEs).
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Figure 11: Predictions of the spatially correlated effects from Figure 9 in the model (17)

with α = 6 under the assumption of a precision operator L = ∆∆, with ξ̂ = 0.0535, along
with mean squared errors (MSEs).
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Figure 12: QQ plot of the conditional residuals from the model with a Brownian (left)
and biharmonic (right) spatially correlated effect (1,000,000 data points). The lines show
the true standard deviation.

model gives a better variance estimate. This is caused by the inherent rough-

ness of the Brownian sheet prior, that will capture some of the noise in the

prediction of the spatially correlated effects.

To quantify the behaviour of the variance parameter estimators 100 inde-

pendent replications (10 for each value of α) of data from the model (17) have

been generated. Figure 13 shows a histogram of σ̂2 under the assumption of

a Brownian and biharmonic correlated effect, respectively. The previously

mentioned property that the Brownian sheet effect results in underestima-

tion of the true standard deviation (0.3162) is clearly visible. It is also seen

that the biharmonic effect underestimates the standard deviation, although

to a much smaller extent.

6. Discussion

This work presents a new method for conducting classical statistical anal-

yses of functional data. By avoiding a direct representation of the data, and

doing calculations in the functional domain, the computational complexities
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Figure 13: Histograms of parameter estimates in the model (17) under assumption of
Brownian and biharmonic correlated effects. The dashed red line in the right histogram
shows the true standard deviation.

of the likelihood function and the predictions of spatially correlated effects are

significantly reduced. In addition to reducing the computational complex-

ity, the problem of predicting spatially correlated effects may be posed as

a partial differential equation. Solvers for such partial differential equations

are easily implemented on massively parallel processors, which drastically

decrease computation times. CUDA C and R (R Core Team, 2012) code for

conducting the presented analyses on NVIDIA graphics hardware is available

as supplementary material.

The presented methods allow for analyzing data that are orders of magni-

tude larger than what has previously been feasible. Using a massively parallel

implementation, it was demonstrated that statistical analysis of a dataset of

2D chromatograms, consisting of more than 140 million spatially correlated

observations can be done in a matter of minutes.

The considered model was kept simple to illustrate the computational

methods, but a number of generalizations can be done. Extensions to vector

valued data and more complex designs, including functional fixed effects, are

straightforward, and the approximations may be useful in e.g. hierarchical

functional models (Staicu et al., 2010). Furthermore, the results are also

easily adapted to the case of the domain T being more complex than what
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was considered here, e.g. a smooth manifold. Further generalizations that

are relevant from the perspective of achieving valid statistical models, but

also require new methodological work, is to allow for variance heterogeneity

(Pintore et al., 2006; Yue et al., 2012b,a) and to incorporate data registration

directly in the mixed-effects model.
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Weickert, J., Schnörr, C., 2001. Variational optic flow computation with a

spatio-temporal smoothness constraint. Journal of Mathematical Imaging

and Vision 14, 245–255.

Yue, Y. R., Simpson, D., Lindgren, F., Rue, H., 2012a. Bayesian adaptive

smoothing spline using stochastic differential equations. arXiv preprint

arXiv:1209.2013.

P.1. APPROXIMATE INFERENCE FOR SPATIAL FUNCTIONAL DATA 47



Yue, Y. R., Speckman, P. L., Sun, D., 2012b. Priors for Bayesian adaptive

spline smoothing. Annals of the Institute of Statistical Mathematics 64 (3),

577–613.

Zach, C., Pock, T., Bischof, H., 2007. A duality based approach for realtime

TV-L1 optical flow. In: Hamprecht, F., Schnörr, C., Jähne, B. (Eds.),
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A. Solving the fourth order PDEs

Consider the differential equation (9) with L = ∂2t1∂
2
t2

(the case L = ∆∆

is treated similarly), i.e.

(∂2t1∂
2
t2

+ c)f = g. (A.1)

This equation is solved using an explicit diffusion scheme, with an added

artificial time variable. The solution to (A.1) is found as the steady state of

the corresponding diffusion equation.

In order to get numerically stable solutions, ∂2t1∂
2
t2

is approximated using

a 5× 5 stencil, and furthermore the diffusion is stabilized by evaluating the

center point of the stencil at the future time point (Weickert and Schnörr,

2001). This scheme is stable for time steps of 0.125, but the convergence

rate is greatly accelerated by using the so-called fast explicit diffusion (FED)

method of Grewenig et al. (2010), which cleverly mix stable and unstable

time steps. In the following example the procedure is demonstrated for a

one-dimensional example.

Example A.1. To illustrate the solution procedure, consider the one-dimensional
version of the differential equation (A.1), i.e. the differential equation (9)
with L = −∂2t . We approximate L by a standard five-point stencil, so
assuming equidistant observations we get

L f(t)|t=ti ≈
f(ti−2)− 16f(ti−1) + 30f(ti)− 16f(ti+1) + f(ti+2)

12(ti − ti−1)2
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The one-dimensional version of the differential equation (A.1) is given by

(−∂2t + c)f = g. (A.2)

Instead of considering this equation directly, we introduce an artificial time
variable τ and consider the diffusion equation

∂τf(t, τ) = g(t)− (−∂2t + c)f(t, τ), (A.3)

where f(t, 0) is initialized using the observed data values. The steady state
of the differential equation (A.3) in τ , e.g. when ∂τf(t, τ) = 0 will solve the
original differential equation (A.2). We discretize

∂τf(t, τ)|τ=τj ≈
f(t, τj+1)− f(t, τj)

τj+1 − τj

and L f(ti, τ)|t=ti,τ=τj is approximated by

f(ti−2, τj)− 16f(ti−1, τj) + 30f(ti, τj+1)− 16f(ti+1, τj) + f(ti+2, τj)

12(ti − ti−1)2
,

where the future time point τj+1 is used in the term f(ti, τj+1) for stability.
The equation (A.3) is now solved iteratively by considering its finite difference
representation, and taking time steps of size τj+1− τj, where at each step we
solve for f(ti, τj+1). ◦

For the glyphosate data from Section 4, the diffusion is assumed to have

reached its steady state once the artificial time reaches 5,000, corresponding

to 40,000 iterations using a step size of 0.125, or a mere 346 FED steps.

The presented solver has been implemented in CUDA C, in order to utilize

the thousands of cores on modern GPUs. The runtime (including writing

to GPU memory) for computing the solution to (A.1) for a single 209 ×
24, 000 chromatogram is on average 2.0 seconds on an NVIDIA GeForce GTX

680MX. The resulting average computation time for the restricted likelihood

function (4) is 69 seconds on the full glyphosate dataset presented in Section

4.
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Chapter 3

Data alignment as a nonlinear effect

3.1 Introduction
In this chapter we present the second and third papers of the thesis.

e first paper, Paper P.2 (Rakêt, Sommer & Markussen 2014), considers the non-
linear mixed-effects model (1.4), where in addition to an additive random effect, a
nonlinear warping effect is considered. We present a linearization scheme for doing
likelihood inference in the resulting model. is in turn gives a model where the phase
and amplitude effects in data are modeled simultaneously and all variance parameters
are estimated by means of maximum likelihood.

Estimation of warping functions is often considered in a Bayesian context through
maximum a posteriori estimation of warps (for classical examples, see Glasbey & Mardia
1998). By considering the warping function a random effect, it becomes natural to
predict warps by means of the posterior in the likelihood framework. us many
existing methods using maximum a posteriori estimation of warps to preprocess data
before further analysis can be considered a single iteration of the presented method.

e model is presented curve data, but can effortlessly be generalized to higher
dimensional domains. ese generalizations come at a computational cost, but for warps
parametrized by a limited number of variables, this cost will be tied to the spatially
correlated effects, in which case one can use the framework described in Paper P.1.

e second paper, Paper P.3 (Raket, Grimme, Markussen, Schöner & Igel 2014),
considers human movement analysis. e proposed model is an extension of the model
considered in Paper P.2. In the movement model, we consider a hierarchical structure
of both the fixed amplitude effect and of the warping that in the given setup represents
timing of the motion. Furthermore, the model is presented in a slightly more elegant
setup where linear fixed effects are modeled using B-splines, which eliminates the need
to back-warp noisy data.
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A nonlinear mixed-effects model for simultaneous

smoothing and registration of functional data
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Abstract

We consider misaligned functional data, where data registration is necessary

for proper statistical analysis. This paper proposes to treat misalignment as

a nonlinear random effect, which makes simultaneous likelihood inference for

horizontal and vertical effects possible. By simultaneously fitting the model

and registering data, the proposed method estimates parameters and predicts

random effects more precisely than conventional methods that register data

in preprocessing. The ability of the model to estimate both hyperparameters

and predict horizontal and vertical effects are illustrated on both simulated

and real data.

Keywords: data alignment, functional mixed-effects model, nonlinear

mixed-effects model, phase variation, amplitude variation, smoothing

1. Introduction

The current standard practice of analyzing functional data in a number

of sequential steps is problematic. Analyses are often carried out by perform-

ing one or more independent preprocessing steps prior to the final statistical
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analysis (Ramsay and Silverman, 2005). Typical examples are data registra-

tion, pre-smoothing, and dimensionality reduction. Such preprocessing steps

can cause problems since the final analysis does not take the resulting data

modifications (and their related uncertainty) into account. In the worst case

this may invalidate the conclusions of the final analysis.

This paper considers misaligned functional data, where proper registra-

tion is key to analyzing the data. Treating data registration as a prepro-

cessing step can cause problems. In particular, noisy observations can skew

registration results such that noise rather than signal is aligned. Since this

type of overfitting happens prior to the statistical analysis, it will lead to

both wrongly predicted warps and underestimation of the noise variance.

To deal with these issues we propose to simultaneously do likelihood-based

smoothing and data registration in a general class of nonlinear functional

mixed-effects models. By computing both registration and smoothing at the

same time, we will get the optimal registration given the prediction of the

functional mixed-effects and vice versa.

The mixed effects are assumed to be observations of Gaussian processes,

and the resulting calculations are carried out by iteratively linearizing the

model and estimating parameters from the resulting likelihood function. In

addition to allowing estimation of the optimal combination of smoothing

and registration, all parameters can be estimated by maximum-likelihood

estimation. This contrasts most previous works on simultaneous smooth-

ing and registration (see e.g. Lord et al. (2007) and Kneip and Ramsay

(2008)) where parameters have to be adjusted (semi-)manually. Some no-

table exceptions are Rønn (2001), Gervini and Gasser (2005), and Rønn and

Skovgaard (2009) who presents methods for doing full likelihood inference

for time-transformed curves, and Allassonnière et al. (2007) who derive a

rigorous Bayesian framework for estimating data deformation and related

parameters. In contrast to the mentioned works, the model we present seeks

to align fixed effects, but allows for serially correlated effects that cannot
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be matched across functional samples. Since much functional data contains

serially correlated noise, e.g. from the measuring device or individual sample

differences, a model that allows the separation of such amplitude variations

from the phase variation is a considerable step forward.

It is worth noting the differences with pair-wise data registration as is

often employed in for example medical imaging. Instead of the common ap-

proach of choosing parameters of the registration model either by heuristic

arguments or by cross-validation, incorporating the entire dataset or popula-

tion in the analysis allows parameters to be estimated by maximum-likelihood

inference. In addition, instead of searching for a similarity measure that is

invariant to certain types of serially correlated effects, e.g. mutual informa-

tion (Viola and Wells, 1995), the explicit modeling of the serially correlated

effects removes the need for invariance in the similarity measure.

The proposed methods are illustrated and compared to conventional pre-

processing alignment on simulated dataset, and a general model for alignment

is proposed and evaluated on four real datasets.

2. Motivation and preliminaries

Two of the major challenges when analyzing functional data are modeling

of individual sample effects and aligning of functional samples. Figure 1 illus-

trates these effects on their own, and in combination, on a one-dimensional

functional dataset.

In order to handle individual variation (corresponding to the situation

in Figure 1 (a)), one can consider a linear functional mixed-effects model

where the kth observation point of functional sample i from the dataset y is

assumed to be generated as follows

yi(tk) = θ(tk) + xi(tk) + εik, (1)

where θ is a fixed effect, xi is a zero-mean Gaussian process with covariance

function σ2S, and εik is independent identically distributed Gaussian noise
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(a) Individual variations (b) Alignment variations (c) Alignment variations
plus individual variations

Figure 1: Different types of variation in a one-dimensional functional dataset. The true
underlying curve is shown in green, the average curve is shown in dashed red.

with variance σ2. Inference in this class of models has been considered in

numerous works (Guo, 2002).

In contrast to the vertical variation due to individual sample differences

one may encounter horizontal variation due to non-aligned samples (Figure

1 (b)). To align samples, one wishes to estimate so-called warping functions

v that model the horizontal variation. Similarly to the vertical variation, one

may consider the following functional mixed-effects model for this setup

yi(tk) = θ(v(tk,wi)) + εik, (2)

where θ and εik are as in (1), and v is a warping function depending on wi

that is a vector of Gaussian parameters with covariance matrix C0. This

model can be considered a nonlinear mixed-effects model, and many known

registration algorithms can be thought of as methods for predicting the warp-

ing parameters in the model (2), with a known fixed effect θ.

The model (2) has been considered in a statistical setting by Rønn (2001),

Gervini and Gasser (2005), and Rønn and Skovgaard (2009), who all consider

the problem in a nonparametric maximum likelihood setting. An alternative

view is taken in shape analysis, where the interest is on the common shape
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θ, while the warping functions are considered nuisance parameters, and data

is generally considered free of observation noise. From this viewpoint Kurtek

et al. (2011) and Srivastava et al. (2011) have recently proposed an estima-

tion procedure for θ based on the Fisher-Rao metric, that is invariant to

diffeomorphic data warping. The mean shape is subsequently used for es-

timating the warping functions and aligning data. This approach produces

state-of-the-art results on numerous examples, but is not generally applicable

to all types of data, since the invariance to diffeomorphic warping may lead

to overfitting when significant noise is present.

In practice, data often exhibit both vertical and horizontal variation.

Figure 1 (c) shows alignment variations of the fixed effect with added serially

correlated effects, i.e. a combination of the models (1) and (2)

yi(tk) = θ(v(tk,wi)) + xi(tk) + εik. (3)

This type of model describe the fixed effect as a deformation of θ and allows

a serially correlated effect xi that follows the coordinate system of the ob-

servation. For some examples, it may be natural to consider the correlated

effects xi in the coordinate system of the fixed effect θ. That model will not

be considered here, but inference may be done completely analogous to the

procedure described for model (3).

Data modeling following the lines of model (3) have received little at-

tention. One notable exception is the paper by Bigot and Charlier (2011)

who consider the sample Fréchet mean as an estimator for θ in the model

(3) where the effect xi also undergo warping by v, and give conditions under

which the estimator is consistent. They do however not consider parameter

estimation and prediction of random effects. In another related work, Elmi

et al. (2011) derive a B-spline based nonlinear mixed-effects model in a maxi-

mum likelihood setting. The model allows incorporation of data registration,

and is applied to labour curve data, where amplitude variation is modeled

parametrically, with random additive and multiplicative effects. Another ap-
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plication of this type of model is considered by Chambolle and Pock (2011)

in the setting of motion estimation in image sequences. They propose to

include a spatially correlated effect that plays the role of lighting differences

between the images in question. Their approach, however, does not take the

uncertainty related to the prediction of the spatially correlated effect into

account in the estimation of the warp, and do not consider the question of

parameter estimation.

In the following we will derive inference methodology for the model (3).

In contrast to conventional preprocessing approaches that register raw data,

the proposed methods can separate horizontal and vertical variation, and

allows for maximum-likelihood estimation of all hyperparameters.

3. Estimation

Consider model (3), where the functional data is defined on a domain

T ⊆ R, with m vectorized samples y1, . . . ,ym, each of which consists of n

points.

The estimation procedures consists of interleaved steps of estimating (a)

the fixed effect and the warps; and (b) the parameters of the model and

the serially correlated effects. In order to do likelihood estimation of the

parameters, we iteratively linearize the model (3) around the given predic-

tion of the warping parameters w. This approach is similar to Lindstrom

and Bates’s (1990) strategy for obtaining maximum likelihood estimates in

nonlinear mixed-effects models. It is however more general from the point of

view that we predict both linear and nonlinear random effects and estimate

the function θ causing the nonlinearity simultaneously.

In pursuance of generality, we will assume that θ is parametrized by its

n values at the positions tk, and that in-between values can be found by

interpolation (e.g. cubic spline interpolation). This parametrization mimics

the parametrization one would use in a conventional mixed effects model,

and follows the well-established convention of interpolation used for motion
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estimation in image sequences (Sun et al., 2010). We will assume differen-

tiability of the estimated effect, so the type of interpolation chosen should

reflect this. More explicit control of the smoothness of θ can be achieved

by specifying a parametric subspace for θ, given by a set of smooth basis

functions, or by means of a roughness penalty (Liu and Guo, 2012). Such

constructions will not be pursued here.

Using the smoothness of θ, the model (3) can be linearized in the warping

parameterswi around a given predictionw0
i by means of the first order Taylor

approximation,

θ(v(tk,wi)) ≈ θ(v(tk,w
0
i )) + ∂tθ(v(tk,w

0
i ))∇wv(tk,w

0
i )(wi −w0

i ).

The derivative of θ may be computed explicitly from the interpolation func-

tion, or it may be estimated by a finite difference approximation.

Let N = mn be the total number of observation points, and let nw be

the dimension of the warping parameters wi. We can write the linearization

of model (3) as a vectorized linear mixed-effects model

y = θw0

+ Z(w −w0) + x+ ε (4)

where

θw0 ≈ {θ(v(tk,w0
i ))}i,k ∈ RN ,

Z = diag(Zi)1≤i≤m, Zi = {∂tθ(v(tk,w0
i ))∇wv(tk,w

0
i )}k ∈ Rn×nw ,

w = (wi)1≤i≤m ∼ Nmnw(0, σ
2C), C = Im ⊗ C0,

x = {xi(tk)}k,i ∼ NN(0, σ
2S), S = Im ⊗ {S(tk, tℓ)}k,ℓ,

ε ∼ NN(0, σ
2IN),

and ⊗ denotes the Kronecker product.

The first step of the analysis consists in estimating the fixed effect θ at

the positions tk. Assuming that w0
i is a correct prediction, back-warping the
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observations yi with v(tk,w
0
i ), and using the non-linearized model we get

that

yi(v
←(tk,w

0
i )) = θ(tk) + xi(v

←(tk,w
0
i )) + ε̃ik,

where ← indicates inversion of the warp. Ignoring the slight change in vari-

ance caused by the back-warping, and hence assuming equal covariances

across the different functional samples, the best linear unbiased estimate

(Henderson, 1975) of θ given the warp is defined pointwise by

θ̂(tk) =
1

m

m∑
i=1

yi(v
←(tk,w

0
i )). (5)

This estimate should in principle be computed such that the interpolation

of the data performed in relation to the back-warping is taken into account.

While such computations are feasible, we will not consider that here, since

the practical difference is minimal.

With this estimate of θ we estimate the variance parameter σ2 and pos-

sible variance parameters in the covariance matrices C and S from twice the

negative log likelihood of the linearized model, which has the form

ℓ(σ2, C, S) = N log σ2 + log detV + σ−2(y − θ̂
w0

+ Zw0)⊤V −1(y − θ̂
w0

+ Zw0),

where V = S+ZCZ⊤+IN . Following Markussen (2013), the double negative

log likelihood is rewritten as

ℓ(σ2, C, S) = nm log σ2 + log detV + σ−2r⊤r

+ σ−2E [w |y ]⊤C−1E [w |y ]

+ σ−2E [x |y ]⊤ S−1E [x |y ] ,

(6)

where r = y− θ̂
w0

−Z(E [w |y ]−w0)−E [x |y ]. The best linear unbiased

predictor of w and the spatially correlated effects x in the linearized model
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are given by their conditional expectations given data (Robinson, 1991)

E [w |y ] = (C−1 + Z⊤(IN + S)−1Z)−1Z⊤(IN + S)−1(y − θ̂
w0

+ Zw0) (7)

and

E [x |y ] = S(IN + S)−1(y − θ̂
w0

− Z(E [w |y ]−w0)). (8)

The estimation process is now iterated: Given the estimates of θ and

the variance parameters, the new warping parameters w0 are predicted by

minimizing the nonlinear negative log posterior (Lindstrom and Bates, 1990)

℘(w) = (y − θ̂
w
)⊤(S + IN)−1(y − θ̂

w
) +w⊤C−1w

= (y − θ̂
w
− E [x |w,y ])⊤(y − θ̂

w
− E [x |w,y ])

+ E [x |w,y ]⊤ S−1E [x |w,y ] +w⊤C−1w

(9)

where

E [x |w,y ] = S(S + IN)−1(y − θ̂
w
).

We note how ℘ differs from conventional methods of estimating data warps

by the explicit modeling of the residual y − θ̂
w
in terms of E [x |w,y ] and

the corresponding complexity cost. This way we allow for probable data

differences that are captured well by the predicted amplitude effect x.

The entire estimation procedure is outlined in Algorithm 1. The inner

loop produces the estimates for the fixed effect and the warps. The outer

loop produces the estimates for the parameters and the predictions of the

serially correlated effects.

4. Experimental results

In this section we study the performance of the estimation procedure.

We first consider a simulation study, where we show that the estimation pro-
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Algorithm 1: Inference in the model (3).

Data: y
Result: Estimates of the fixed effect and variance parameters of the

model (3), and the resulting predictions of the serially
correlated effects x and the warping parameters w

// Initialize parameters

Initialize w0

Compute θ̂
w0

following (5)
for i = 1 to imax do

// Outer loop: parameters, serially correlated effects

Estimate variance parameters and predict serially correlated effects
by minimizing the double negative log linearized likelihood (6)
for j = 1 to jmax do

// Inner loop: fixed effect, warping parameters

Predict warping parameters by minimizing (9)
Update linearization points w0 to current prediction

Recompute θ̂
w0

from (5)
end

end
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cedure is able to correctly predict the parameters of the underlying model

used for generating the data, and illustrate how the simultaneous estimation

of warps and serially correlated effects increases the precision of the predic-

tions. This is followed by an example of a general class of models that can

be used for modeling non-aligned data. We illustrate the models on four real

datasets.

4.1. Simulation study
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Figure 2: Density plots of variance parameter estimates from 200 independent realiza-
tions of the model (10). Seven outliers have been removed in the buttom left plot (4
Simultaneous, 3 Preprocessing)

Consider synthetic data generated from the model

yi(tk) = θ(tk + wi) + xi(tk) + εik (10)

where the wis and εiks are respectively independent identically distributed

N (0, σ2λ2) and N (0, σ2) variables, the xis are independent zero-mean Gaus-

sian processes with Matérn covariances σ2S
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Figure 3: Density plots of mean square errors of θ̂ (top) and predictions of the serially
correlated effects x (buttom left) and the warping parameters w (buttom right) from 200
independent realizations of the model (10). Ten outliers have been removed in the buttom
left plot (4 Simultaneous, 6 Preprocessing).

S(s, t) = 1

σ2Γ(ν)2ν−1

(√
2να∥s− t∥

)ν

Kν

(√
2να∥s− t∥

)
, (11)

where Kν is the modified Bessel function of the second kind, and θ is given

by

θ(t) = φ(t, 0.3, 0.052) + φ(t, 0.5, 0.12)− φ(t, 0.6, 0.052) + φ(t, 0.7, 0.032)

where φ(t, µ, ς2) is the normal density with mean µ and variance ς2. The

variance parameters of the model were chosen as follows

σ = 0.125, λ = 0.3, ν = 1.5, α = 10.

Figure 1 (c) displays noiseless samples from this model, i.e. with ε = 0.
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We generated 200 independent functional dataset with m = 50 functional

samples, each consisting of n = 200 observation points.

The presented method, denoted by Simultaneous, was applied to the sim-

ulated datasets. The fixed effect θ was interpolated using a natural cubic

spline and the shifts wi were initialized as the minimizers of the least squares

criterion

(y − θ̂
w
)⊤(y − θ̂

w
).

The algorithm used imax = 5 outer iterations and jmax = 10 inner iterations,

after which convergence was assumed.

The method was compared to a Preprocessing approach where the warp-

ing parameters w were predicted by minimizing

(y − θ̂
w
)⊤(y − θ̂

w
) + λ−2w⊤w

using the ground truth λ value. This procedure corresponds to performing

the inner iterations of Algorithm 1, which is equivalent to iteratively mini-

mizing the negative log posterior of model (2), i.e. (9) with S = 0, updating

the estimate θ after each iteration. The resulting predictions were then used

to back-warp data (i.e. each yi was shifted by −ŵi), which was subsequently

analyzed using model (1). Finally the simulated datasets without shifts were

analyzed using model (1), producing a reference points for the optimal per-

formance of the other methods. We denote this method by No shift.

Figure 2 shows density plots of the estimated variance parameters, and

Figure 3 displays density plots of the mean square errors of the estimated

fixed effects θ̂ evaluated at all observation points tk, and the predictions of

the serially correlated effects x and warping parameters w. We see that the

proposed method produces good parameter estimates and generally mimics

the results of No shift. Preprocessing on the other hand, generally underes-

timates the variance of the noise and overestimate the variance of the corre-
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lated effects, which is symptomatic of bad alignment. Figure 3 shows that all

methods estimate θ̂ reasonably well, but that the ability of Preprocessing to

predict the serially correlated effects x and the warping parameters w is sig-

nificantly worse than Simultaneous. The simultaneous parameter estimation

and prediction of x and w clearly increases the precision of the predictions,

and generally mimics the optimal behavior of No shift.

4.2. Real data

In this section we consider a general application of model (3) for simulta-

neously aligning data and modeling individual amplitude effects. We consider

four real datasets: Handwriting signature acceleration data (Kneip and Ram-

say, 2008); gene expression data (Leng and Müller, 2006); growth velocity

data for male subjects in the Berkeley growth study1; and spike train data

(Wu and Srivastava, 2011). These four datasets has previously been analyzed

in the context of data registration by Srivastava et al. (2011), who also give

detailed descriptions of the datasets.

For the spatial covariance σ2S we use the exponential covariance function

S(s, t) = β exp(−α∥s− t∥), α, β ∈ (0,∞)

which is a special case of the Matérn covariance (11).

We consider two different models for the distribution of the warps of the

time axis [0, 1]. The first one is given by linear interpolation of a discretized

Brownian bridge evaluated at the points t′1, . . . , t
′
nw
, i.e. the covariance matrix

C0 of wi = (wi1, . . . , winw) is given by evaluation of the covariance function

C(t, t′) = λ2(t ∧ t′ − tt′),

where ∧ denotes the minimum operator. The second model instead assumes

a Brownian motion, i.e.

1http://www.psych.mcgill.ca/faculty/ramsay/datasets.html
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Figure 4: Results of Algorithm 1 on four datasets. Black dashed curves show the mean
curve.

C(t, t′) = λ2(t ∧ t′).

The corresponding warping function is
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v(tk,wi) = tk + Ewi
(tk),

where Ewi
is the linear interpolation function of wi. The Brownian bridge

model is useful for data where the observed endpoints of the functional sam-

ples correspond to the endpoints of the fixed effect. The Brownian motion

model is suitable when the variance of the warp increase with t, and the right

endpoints of the functions are different, thus allowing warping of the fixed

effect outside of the right endpoint.

While these models assign positive probability to non-diffeomorphic warps,

a sufficiently small λ-value will make the predicted warps diffeomorphisms

with high probability. As we will see, the maximum likelihood estimates for

the given datasets do not lead to any non-diffeomorphic warping functions.

The Brownian bridge model was used for the signature and gene expres-

sion data, while the Brownian motion model was used for the male growth

data and the spike train data, where warping effects seem to accumulate

over time. We used nw = 15 equidistant warping points in [0, 1] and the

number of inner iterations jmax was fixed to 10. In order to have comparable

results all datasets were normalized to [0, 1] prior to the analysis. We note

that since the linearization is a local approximation, we may get stuck in a

local minimum depending on the initialization of the warps—in particular if

the warps severely overfit the data in a non-diffeomorphic fashion. For this

reason we initialize the warps by running 10 inner iterations of minimizing

the nonlinear posterior (9) using the parameters λ = 1, β = 10 (Brownian

bridge) and β = 100 (Brownian motion), and α = 1, which produce initial

warps that only deviate slightly from the identity. Table 1 contains informa-

tion about data sizes, runtime, and number of outer iterations imax needed for

convergence. Table 2 contain the parameter estimates for the four datasets, a

relative warp variance (rwv) measure that is computed as the average relative

variance contribution of the warp in the linearized model (4), i.e.
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1

N

m∑
i=1

n∑
k=1

Var(∂tθ(v(tk,w
0
i ))∇wv(tk,w

0
i )wi)

Var(yi(tk))
.

Furthermore, Table 2 hold three different measures of data synchronization

(Srivastava et al., 2011).

Table 1: Data sizes, number of iterations needed for convergence, and total runtime (3.4
GHz Intel Core i7, single core) of Algorithm 1 for the four datasets. Convergence was
assumed when the variance parameters did not change in two consecutive outer iterations.

m n imax runtime
Signature 20 98 77 2509 sec

Gene expression 159 52 31 2388 sec

Male growth 39 156 36 1181 sec

Spike train 10 250 51 5883 sec

Table 2: Estimated variance parameters for the four real datasets, along with measures of
model fit. rwv denotes the average relative data variation ascribed to the warp (see text),
and ls, pc, and sls denotes respectively cross-validated least squares, pairwise correlation,
and Sobolev least squares (see Srivastava et al. (2011) for details).

σ̂ λ̂ β̂ α̂ rwv ls pc sls
Signature 1.96 · 10−4 230 4.33 · 105 1.65 0.19 0.59 1.07 0.26

Gene expression 2.03 · 10−4 282 2.12 · 105 2.98 0.05 0.94 1.19 0.81

Male growth 1.41 · 10−4 751 2.47 · 105 2.86 0.35 0.77 1.11 0.42

Spike train 1.67 · 10−4 536 1.04 · 105 2.53 0.51 0.77 0.98 0.58

The results of the registration procedure on the four datasets can be seen

in Figure 4. Visually, the improved alignment of the curves is immediate.

For the signature and male growth data, the data synchronization measures

in Table 2 are comparable to the results of Srivastava et al. (2011), while

the synchronization for the gene expression and spike train datasets is lower.

These less obviously aligned samples however fit well with the goal of the

model—we want to decompose data variation into horizontal and vertical

components. In particular we see that the average relative warp variance is
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only 0.05 for the gene expression data, which indicates that the model found

that the amplitude variation in the data was so large, that only large scale

structures could be matched.

Finally, we notice that for the gene expression and male growth data, the

predicted individual effects seem to imply a bigger variability at the beginning

of the samples. Modeling the covariance of the xis to follow the underlying

physical heterogeneity of the data, could possibly improve the model fit.

5. Conclusion and outlook

We have introduced a statistical model that includes data warping for

misaligned functional data. Compared to previous works, the model in-

corporates serially correlated effects explicitly and simultaneously provided

estimates of the model parameters. The corresponding estimation algorithm

was compared to conventional data analysis where registration is done as

preprocessing in the simplest case of misaligned data; the fixed-effect curve

being shifted across samples. The comparison demonstrated that param-

eters were estimated significantly better using the simultaneous approach,

and that serially correlated effects were predicted more precisely. Further-

more, we demonstrated that the model can be applied to real data with good

registration results.

The proposed model can be extended in several directions. In its pre-

sented form, the model allows for parametric warping of data. Replacing the

warping parametersw in model (3) by a continuous Gaussian processes would

allow for fully non-parametric warping. Furthermore the model is easily gen-

eralized to more complex experimental designs or data on high-dimensional

domains, such as images.

The presented algorithm is computationally demanding for large data

sizes, because of the need to invert the dense covariance matrices of the

individual effects. For models with low-dimensional parametric warps, the

computationally attractive approximations for predicting individual effects of
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Markussen (2013) and Rakêt and Markussen (2014) are directly applicable.

New methodological work is however still required in order to use the pre-

sented model on very large datasets requiring non-parametric registration,

e.g. neuroimage data.
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Abstract

A major challenge in the study of human motion is to determine systematic pat-
terns and differences in movements between subjects. In this paper, we consider
human arm movements in various obstacle avoidance tasks. We identify the natu-
ral types of variation in such data and use these to derive a hierarchical nonlinear
functional mixed-effects model, which decomposes movements into task specific
aspects, individual effects, and noise. We demonstrate how to do maximum like-
lihood estimation of the parameters. The learnt individual movement templates
are evaluated in a classification scenario. The results support the use of nonlinear
mixed-effects models as a well-grounded alternative to conventional movement
analysis frameworks.

1 Introduction

The human movement apparatus has more degrees of freedom than needed to realize any particu-
lar motor task (e.g., on the level of joint angles and the muscle system) [1]. A major question in
the neuroscientific study of movements is how the central nervous systems copes with this free-
dom; how does it pick a particular solution out of the endless possibilities? Research on decoding
the formation and arm controlling mechanisms of the central nervous system typically consider the
question in terms of optimization principles or invariances. The former assumes that evolution-
ary and learning processes have led to the maximization of movement benefits. Such optimization
principles of arm movement include: maximizing smoothness [2, 3], minimization of movement
effort [4], and minimization of end-effector error [5]. The latter research path seeks to answer the
question by searching for invariant movement characteristics that can serve as building blocks for a
theoretical description of movements. Successful instances of this approach are the discovery of the
piecewise planarity of end-effector paths [6], the 2/3 power law [7], and the isochrony principle [8].
The opposing perspective on movement generation focuses on differences and the discrimination
of individual characteristics. Instead of looking for building blocks of movements that are com-
mon for all subjects, the focus of intersubject variability of movements can enable the identification
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of subjects from single movement trajectories. Such motion classification finds many commercial
and non-commercial uses. From a product usability point of view, detecting the person behind a
given motion can be valuable, as the system can, for example, automatically load custom profiles.
Alternative uses of such motion classification are access control and threat detection [9, 10].

When observing movement data, the natural atoms of the analysis are curves that describe position,
velocity and/or some other derived quantity of a given repetition. To analyse such functional data,
one wants to decompose the observed signal into a common task specific trajectory, subject-specific
motion traits, and noise. In the arm movement setting, timing of the movement has a major influence
on the data. The conventional approach to modeling functional data with time-warping effects is to
pre-align samples under an oversimplified noise model [11], in the hope of eliminating the effects of
movement timing. In contrast, we propose an analytic framework where the decomposition of the
signal is done simultaneously with the estimation of movement timing effects, so that samples are
continually aligned under the estimated noise model. This allows maximal extraction of details of
the trajectories.

The desired decomposition into common effect (the task specific aspects of the movement trajec-
tory), individual effect, and noise naturally leads to a mixed-effects formulation [12]. The addition of
nonlinear timing effects gives the model the structure of a hierarchical nonlinear mixed-effects model
[13]. We present a framework for maximum-likelihood estimation and demonstrate that the method
leads to high-quality templates that foster subsequent analysis (e.g., classification). Furthermore, the
model can be used for testing of invariance hypotheses across participants and experiments.

In this study, we consider simple grasping tasks with obstacle avoidance. We model the acceleration
curves, which are composed of a common pattern and the individual deviations from it, to capture
amplitude effects. The timing of the acceleration profiles is determined by individual time warp-
ing functions. The identified time warping functions will be of higher quality than conventional
estimates, since both timing and movement noise are modeled simultaneously. The high quality of
the estimates are demonstrated in a motion classification setup, where the model produces superior
classification results.

2 Experimental setup

Ten participants performed a series of simple obstacle avoidance tasks on a table by relocating a
cylindrical object from a starting position to a target position. Between the starting position and
target, obstacles of varying heights and positions were placed. The participants were instructed to
avoid the obstacles by lifting the cylindric object over them, see Figure 1.

The movements were recorded with the Visualeyez (Phoenix Technologies Inc.) motion capture
system VZ 4000. Two trackers, each equipped with three cameras, were mounted on the wall 1.5
m above the working surface, so that both systems had an excellent view of the table. A wireless
infrared light-emitting diode (IRED) was attached to the object. The trajectories of markers were
recorded in three Cartesian dimensions at a sampling rate of 110 Hz based on a reference frame
anchored on the table. The starting position projected to the table was taken as the origin of each
trajectory in three-dimensional Cartesian space. The acceleration curves considered here were ob-
tained by using finite difference approximations of the raw velocity magnitude data.

Fifteen obstacle avoidance tasks were performed (one for every combination of obstacle height
S, M, or T and obstacle distance from starting position d ∈ {15, 22.5, 30, 37.5, 45}) as well as a
control experiment with no obstacle. The participants repeated each task ten times, giving m = 100
functional samples per experiment, and a total of Nf = 1600 functional samples in the dataset, with
a total data size of N = 133,133 observation points.

3 Model and estimation

In the following, we describe inference for a single experimental setup. The extension to simulta-
neous inference for all experiments is straight-forward. For a given experimental setup—an object
that needs to be moved to a target and an obstacle that needs to be avoided—we assume there will
be a common underlying pattern in all acceleration curves; all m participants will lift the object and
move it toward the target, at some point lifting it over the obstacle. We will denote the underlying
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Figure 1: Obstacle avoidance setup. Participants have to move the cylindrical object O from the
starting position to the target position by lifting it over an obstacle. Obstacles of three different
heights, small (S), medium (M), and tall (T), were used in the experiment, and the distance from
starting position to obstacle d were varied across the experiments.

common acceleration curve for the experiment by θ. In addition to this fixed acceleration profile,
we assume that subject i has a typical deviation φi from θ, in other words, the solution strategy of
subject i produces the acceleration profile θ + φi. On top of this ideal trajectory, we assume that
there will be a layer of additive correlated noise, that is, for repetition j of the experiment we have
an additive random effect xij that causes deviation from the ideal path. Finally we assume that the
data contains observation noise εij tied to the tracking system.

In addition to these linear amplitude effects, we assume that each person has an individual, consistent
timing of the movement, which corresponds to a time deformation of the acceleration curve. We call
this time warping function νi. Finally, we assume that person i’s jth repetition of the experiment
will contain random timing variation around νi in the form of a random warping function vij .

Altogether, this gives the following model for the observed acceleration trajectories across subjects

yij(t) = (θ + φi) ◦ (νi + vij)(t) + xij(t) + εij(t) (1)

where t denotes time, θ, φi, νi : R → R are fixed effects and vij , xij and εij are random effects.
The serially correlated effect xij is assumed to be a zero-mean Gaussian process with known para-
metric covariance function S : R×R → R; the randomness of the warping function vij is assumed
to be completely characterized by a vector of nw zero-mean Gaussian random variables wij with
covariance matrix σ2C; and εij is Gaussian white noise with variance σ2.

3.1 Estimation

Model (1) is parametrized by a considerable number of parameters, and contains both linear and
nonlinear parameters and effects that interact. This renders direct simultaneous likelihood estimation
intractable. Instead we propose a scheme where fixed effects and parameters are estimated and
random effects are predicted iteratively on three different model levels in an EM-type fashion:

Fixed warp model At the fixed warp level, we fix the person-specific warping effect νi at the con-
ditional maximum likelihood estimate, and the random warping function vij at the predicted values.
The resulting model is an approximate linear mixed-effects model with Gaussian random effects xij

and εij , that allows direct maximum-likelihood estimation of the remaining fixed effects θ and φi.
Nonlinear model At the nonlinear level, we consider the original model (1), and simultaneous
perform conditional likelihood estimation of the person specific warping functions and prediction of
the random warping functions from the negative log posterior. All other parameters remain fixed.
Linearized model At the linearized level, we consider the first order Taylor approximation of
model (1) in the random warp vij . This linearization is done around the estimate of νi plus the
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given prediction of vij from the nonlinear model. The result is again a linear mixed-effects model,
for which one can compute the likelihood explicitly, while taking the uncertainty of all random
effects—including the nonlinear effect vij—into account. At this level all variance parameters are
estimated using maximum-likelihood estimation.

The estimation/prediction procedure is similar to the algorithmic framework proposed in [14], which
in turn builds on the conventional linearization scheme suggested in [13]. In the given setting, we
have adapted the estimation procedure to the hierarchical structure of data. Furthermore, we refine
the algorithm in [14] in several respects, in particular we avoid back-warping of the noisy data when
estimating linear fixed effects. In the following we will go through the steps of the estimation.

Let yij be the vector of the nij observations for person i’s jth replication of the given experiment,
and let yi and y denote the concatenation of all functional observations of person i in the experiment
and all functional observations in the given experiment, respectively. We denote the lengths of these
vectors by ni and n. Furthermore, let σ2Sij , σ2Si and σ2S denote the covariance matrices of
respectively xij = (xij(tk))k, xi = (xij)j , and x = (xi)i. We note that the index set for k
depends on i and j since the covariance matrices Sij vary in size due to the different durations of
the movements and because of possible missing values due to sensor occlusions.

We note that all random effects are scaled by the noise standard deviation σ. This parametrization is
chosen because it simplifies the likelihood, as we shall see. Finally, we denote the norm induced by
the covariance matrix A by ∥z∥2A = z⊤A−1z.

Fixed warp level We model the underlying curve θ and the person-specific variation around this
curve φi in the common (warped) functional basis Φ, with weights c = (c1, . . . , cK) for θ and
di = (di1, . . . , diK) for φi. We assume that the person-specific variations φi are around θ and thus∑

i di = 0. Furthermore, we penalize the square magnitude of the weights di with a weighting
factor η. This penalization will direct the alignment process in the direction of the highest possible
level of detail in the common profile θ.

For fixed warping functions νi and vwij , the negative log likelihood function in θ = Φc becomes

ℓ(c) = ∥y −Φc∥2In+S

which yields the estimate

ĉ = (Φ⊤(In + S)−1Φ)−1Φ⊤(In + S)−1y.

The penalized profile likelihood for the weights di for φi is

ℓ(di) = ∥yi −Φi(ĉ+ di)∥2Ini
+Si

+ ηd⊤
i di,

which gives the maximum likelihood estimator

d̂i = (Φ⊤
i (Ini + Si)

−1Φi + ηIK)−1Φ⊤
i (Ini + Si)

−1(yi −Φiĉ).

Nonlinear level Similarly to the linear mixed-effects setting [15], it is natural to predict nonlin-
ear random effects from the posterior [13]. Since the conditional negative (profile) log likelihood
function in νi given the random warping function vij and the negative (profile) log posterior for wij

coincide, we propose to simultaneously estimate the fixed warping effects νi and predict the random
warping effects vij from the joint conditional negative log likelihood/negative log posterior

p(νi,wij) =
∑
j

∥yij − (θ̂ + φ̂i) ◦ (νi + vij)(tk)k∥2Inij
+Sij

+
∑
j

∥wij∥2C , (2)

where the Gaussian variables wij parametrize the randomness of νij . Since these variables can be
arbitrarily transformed through the choice of warping function vij , the assumption that variables are
Gaussian is merely one of computational convenience.

Linearized level We can write the linearization of model (1) in the random warping parameters
wij around a given prediction w0

ij as a vectorized linear mixed-effects model

y ≈ ϑ+ Z(w −w0) + x+ ε (3)
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with effects given by
ϑ = {(θ + φi) ◦ (νi + v0ij)(tk)}ijk ∈ Rn,

Z = diag(Zij)ij , Zij = {∂t(θ + φi) ◦ (νi + v0ij)(tk)(∇wv0ij(tk))
⊤}k ∈ Rni×nw ,

w = (wij)ij ∼ Nmnw(0, σ
2Im ⊗ C), x ∼ Nn(0, σ

2S), ε ∼ Nn(0, σ
2In),

where v0ij indicates that the warping function is evaluated at the prediction w0
ij and ⊗ denotes the

Kronecker product.

Altogether, twice the negative profile log likelihood function for the linearized model (3) is

ℓ(σ2, C, S) = n log σ2 + log detV + σ−2∥y − ϑ̂+ Zw0∥2V (4)

where V = S + Z(Im ⊗ C)Z⊤ + IN .

3.2 Modeling choices and algorithmic setup

The model (1) has so far only been presented in a general setting. In this section we consider the
specific modeling choices. The data has been rescaled using a common scaling for all experiments,
such that the span of data values has length 1 and the global timespan is considered as [0, 1].

For the modeling of the amplitude effects, we use a functional basis Φ consisting of K B-spline
functions [11].

We require that the fixed warping function νi is a piecewise linear homeomorphism parametrized by
nw equidistant anchor points in (0, 1), and assume that vij is of the form

vij(t) = t+ Eij(t),
where Eij(t) is the linear interpolation at t of the values wij placed at the nw anchor points in (0, 1).
We model wij as a discretely observed zero-drift Brownian Bridge with scale σ2γ2 [16, Chapters
8-9], which means that the covariance matrix σ2C is given by point evaluation of the covariance
function

C(t, t′) = σ2γ2 t(1− t′)

for t ≤ t′. When predicting the warps from the negative log posterior we restrict the search space
to warps νi and νi + vij that are homeomorphic maps of the domain [0, 1] onto itself. The condi-
tional distribution of νij given this restriction is slightly changed. We will however use the original
Brownian model as an approximation of the true distribution.

We assume that the sample paths of the serially correlated effects xij are smooth and that the process
is stationary [2]. A natural choice of covariance is then the Matérn covariance with smoothness
parameter 2 (producing continuously differentiable sample paths), scale σ2τ2 and range 1/α [17].

Finally, in order to consistently penalize the person specific spline across experiments with varying
variance parameters, we will use penalization weights that are normalized with the variance of the
amplitude effects, i.e. η = λ/(1 + τ2).

The algorithm for doing inference in model (1) is outlined in Algorithm 1. We have found that
imax = jmax = 5 outer and inner loops are sufficient for convergence.

The number of basis functions K, the number of warping anchor points nw, and the regularization
parameter λ were determined by the average 5-fold cross-validation score on each of three exper-
imental setups (d = 30 cm and obstacle heights S, M, and T). The models were fitted using the
method described in the previous section, and the quality of the models were evaluated by means of
classification accuracy of person for a given movement in the test set, using the L2 distance between
the sample and the combined estimated fixed effects (θ + φi) ◦ νi. The cross-validation was done
over a grid of the following values K ∈ {20, 25, 30, 35}, nw ∈ {40, 50, 60}, and λ ∈ {1, 2, 3, 4}.
The best values were found to be K = 30, nw = 50 and λ = 3.

4 Results and discussion

Variance parameters We fitted the model to data from each of the 15 obstacle avoidance tasks,
using experiment-specific variance parameters. The estimated fixed effects can be found in Figure 2,
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Algorithm 1: Inference in the model (1).
Data: y
// Initialize parameters

Compute θ̂ and φ̂1, . . . , φ̂m assuming an identity warp
Initialize νi and w0

ij by minimizing the posterior (2) with γ2 = 0

for i = 1, . . . , imax do
// Outer loop
Estimate variance parameters by minimizing the linearized likelihood (4)
for j = 1, . . . , jmax do

// Inner loop
Estimate and predict warping functions by minimizing the posterior (2)
Update linearization points w0

ij to current prediction
Recompute θ̂ and φ̂1, . . . , φ̂m

end
end

and the estimated variance parameters can be found in Table 1. Higher resolution figures are avail-
able in the supplementary material. From Figure 2, the most visible effect is that the intersubject
variability seem to decrease with obstacle distance. Furthermore, duration of the movement also
seems to increase with obstacle height. When considering the estimated variance parameters in Ta-
ble 1, the variability of the estimated noise standard deviation σ is perhaps mildly disturbing, but is
likely caused by acceleration spikes that are not accounted for in the model. The most interesting
parameters are the standard deviation στ of the serially correlated effects xij , and the scale σγ of
the random warping functions vij . We note that both the estimated scales of the serially correlated
effects σ̂τ̂ and of the random warping functions σ̂γ̂ seem quite stable across the experiments, with
no clear pattern in the variability. One could have expected that the variability was tied to the ex-
perimental setup, and that a higher variability in timing was present for the tall obstacle size, where
the movement durations appear longer than for the small and medium obstacles, for example. We
note that since starting position and velocity are known, we can directly map the estimated point
correspondences back into three-dimensional space to conduct the analysis on the spatial paths.

(106 · σ̂, 104 · σ̂τ̂ , α̂, 103 · σ̂γ̂) S M T
15.0 cm (151, 264, 234, 140) (125, 234, 229, 104) (121, 253, 224, 106)

22.5 cm (193, 263, 251, 104) (164, 278, 222, 128) (115, 239, 217, 126)

30.0 cm (224, 260, 228, 123) (157, 251, 244, 115) (227, 233, 237, 113)

37.5 cm (225, 253, 255, 111) (283, 268, 244, 134) (117, 241, 207, 126)

45.0 cm (155, 238, 239, 114) (214, 256, 262, 98) (115, 253, 206, 117)

Table 1: Estimates of the variance parameters in the 15 obstacle avoidance setups. Italics indicates
data used in the cross-validation to determine the model parameters.

Classification An interesting use of movement data is person classification based on motion traits.
Such applications are becoming increasingly relevant with the recent technological advances in mo-
tion tracking systems, and the growing array of digital sensors in handheld consumer electronics.

We consider template based classification, where a characteristic acceleration profile is calculated
for each subject, and used for classification. In the following, we describe the different methods con-
sidered. All stated parameters have been chosen by 5-fold cross-validation on the experiments with
obstacle distance d = 30.0 cm. The used grids are given in the supplementary material. Nearest
Centroid (NC) classification estimates the pointwise, unaligned mean functions and uses these for
classification using the L2 distance. Nearest Centroid Percentual time (NCP) classification aligns
the samples linearly according to percentual motion time, where all motion endpoints correspond to
100% percentual time. The classification is then done analogously to NC. Modified Band Median
(MBM) classification estimates templates using the modified band median proposed in [18], which
under certain conditions is a consistent estimator of the underlying fixed amplitude effects warped
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Figure 2: Estimated fixed effects (θ+φi)◦νi in the 15 obstacle avoidance experiments. The dashed
curve shows the estimate for θ.

according to the modified band medians of the warping functions. Classification is done using L2

distance to the estimated templates. In the computations we count the number of bands defined by
J = 4 curves [18, Section 2.2]. Robust Manifold Embedding (RME) classification estimates tem-
plates using the robust manifold embedding algorithm proposed in [19], which, assuming that data
lies on a low-dimensional smooth manifold, approximates the geodesic distance and computes the
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empirical Fréchet median function. Classification is done using L2 distance to the estimated tem-
plates. Fisher-Rao (FR) classification estimates templates as Karcher means under the Fisher-Rao
Riemannian metric [20] of the data represented using a single principal component [21]. Classifi-
cation is done using L2 distance to the estimated templates. Elastic Fisher-Rao (FRE) classification
estimates templates analogously to FR, but classifies using the weighted sum of elastic amplitude
and phase distances [22, Definition 1 and Section 3.1]. The phase distance was weighted by a fac-
tor 1.5. The proposed Timing and Motion Separation (TMS) classification estimates templates of
the fixed effects (θ + φi) ◦ νi using Algorithm 1. Classification is done using L2 distance to the
estimated templates. Posterior Timing and Motion Separation (TMSP) classification estimates tem-
plates analogously to TMS, but classifies using distance measured in the negative log posterior (2)
as a function of the test samples.

We evaluate classification accuracy using 5-fold cross-validation, which means that eight samples
are available in the training set for every person. The folds of the cross-validation are chosen chrono-
logically, such that the first fold contains replications 1 and 2, the second contains 3 and 4 and so on.
The results are available in Table 2. We see that TMS and TMSP achieves the highest classification
rates, followed by FRE and RME.

The classification results across all methods suggests two interesting phenomena, namely that the
difficulty of the classification task increase with obstacle distance, and is also markedly increased
for the medium obstacle height M, compared to S and T. These observations suggest that the move-
ments are either more tightly clustered together across subjects or contain a higher level of random
variability for greater obstacle distances, and for the medium height obstacle.

d obstacle NC NCP MBM RME FR FRE TMS TMSP

S 0.36 0.48 0.53 0.55 0.47 0.62 0.56 0.53
15.0 cm M 0.36 0.46 0.38 0.41 0.36 0.47 0.44 0.39

T 0.41 0.47 0.41 0.49 0.32 0.49 0.52 0.50
S 0.36 0.49 0.34 0.37 0.44 0.50 0.52 0.47

22.5 cm M 0.38 0.44 0.42 0.46 0.32 0.42 0.47 0.45
T 0.36 0.49 0.45 0.46 0.48 0.53 0.48 0.42
S 0.27 0.29 0.37 0.41 0.40 0.46 0.47 0.43

30.0 cm M 0.30 0.42 0.38 0.40 0.36 0.46 0.49 0.44
T 0.37 0.44 0.42 0.50 0.37 0.39 0.48 0.50
S 0.28 0.45 0.41 0.42 0.36 0.39 0.52 0.58

37.5 cm M 0.26 0.33 0.33 0.35 0.35 0.32 0.39 0.39
T 0.31 0.43 0.38 0.40 0.50 0.49 0.39 0.42
S 0.25 0.38 0.33 0.32 0.32 0.37 0.45 0.44

45.0 cm M 0.29 0.31 0.29 0.38 0.36 0.38 0.38 0.50
T 0.29 0.39 0.45 0.48 0.39 0.44 0.50 0.45

average 0.322 0.418 0.393 0.426 0.387 0.449 0.470 0.461

Table 2: Classification accuracies of various methods. Bold indicates best result(s), italics indicates
that the given experiments were used for training.

Hypotheses testing The model allows for testing of hypotheses about human motion. In the cur-
rent form, the described setup allows for testing of motion hypotheses through the parameters of the
model. Classical asymptotic behavior would suggest that the difference in twice the log likelihood
functions (4) under the model and hypothesis can be approximated by a χ2-distribution with degrees
of freedom given by the difference in parameter count under the model and under the hypothesis.
In practice, the validity of this approximation is often questionable for functional data [23]. For the
given dataset, fitting a combined model to all 16 experiments with individual parameters for each
setup gives a likelihood value (4) of −1417861. Assuming a common noise variance parameter σ2

across experiments increases the value to−1414632. Finally, assuming common noise variance σ2

and warp variance γ2 gives a likelihood value of −1402531. The test statistics of going from the first
model to the second is thus 3229 and from the second to the third is 12101, which when evaluated
against a χ2-distribution with 15 degrees of freedom gives p-values that are essentially zero. Note
however that the assumed true model that measurement noise is equal across experiments seems
much more likely than the hypothesis that timing variation is comparable across experiments.
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In order to state credible p-values we need additional model validation, and to use either specialized
tests for the functional mixed-effects setting [24], or to approximate the distribution of the test
statistic better, for example by simulation studies.

5 Conclusions

We have proposed a statistical framework for modeling of human arm movements. The hierarchical
nonlinear mixed-effects model systematically decomposes movements into common effects, indi-
vidual effects, and noise and considers nonlinear timing effects. We have outlined a method for
doing likelihood estimation in the model, and analyzed a dataset consisting of acceleration trajec-
tories in an obstacle avoidance task. The quality of the estimates were evaluated in a classification
task, where our model produced superior results compared to state-of-the-art template based curve
classification methods. These results indicate that our templates are both more consistent and richer
in detail. Because of its conceptual properties and our experiments, we suggest nonlinear mixed-
effects modeling as a preferable alternative to conventional movement analysis frameworks.
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Chapter 4

Conclusion

4.1 Contributions

e work presented in this thesis marks the two first steps toward a framework for
analyzing functional objects based on stochastic processes. In Chapter 2 we presented
an approximation method that allowed efficient likelihood analyses of functional data
on high-dimensional Euclidean spaces, and in Chapter 3 we presented a model that
included both phase and amplitude variation in functional data, thus accounting for the
two most natural types of variation.

e principles behind the presented work has been that one should avoid oversim-
plification and preprocessing of the data at hand, but instead try to build statistical
models that account for relevant data effects.

4.2 Future work

Statistical analysis of functional objects is a young field with many open problems. While
a general likelihood-based framework that seamlessly handle the more exotic functional
objects from Chapter 1 still seem out of reach, there are many simpler problems that
can be addressed.

In addition to development of new methodology for data of different complexities,
there is also a need to study and compare existing methodology in the functional setting,
and to develop methodology to answer new types of questions.

e following four subsections describe extensions to the work described here, that
we are currently considering.
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4.2.1 Local significance

For many types of experiments, the question of interest is not whether there is an
effect, but where the effect of e.g. treatment or disease can be found in the data
(this question is for example relevant for the Glyphosate data in Paper P.1). While
functional regression, or local per-observation regression on the distinguishing variable
may provide ad hoc answers to this question, a more reliable answer would consider the
question in connection to the data model. A possible solution is to answer the question
using p-values obtained from classical statistical testing. is approach may however be
problematic from the point of view of current modeling paradigms in functional data
analysis. Firstly, the standard asymptotic basis of statistical testing fails for immense
numbers of parameters, and gives rise to a multiple testing problem. Secondly, for
models formulated in terms of discrete bases, the individual basis functions—which
may have non-obvious interactions—typically do no represent stand-alone effects in the
functional signal, and thus significance testing of local effects in terms of basis functions
will generally give skewed results. To address the multiple testing problem, alternative
extremity-based measures of significance have been developed in bioinformatics (Altschul
et al. 1997). In the functional setting, such constructions does not seem to have been
considered. Compared to the methods of Altschul et al. (1997), the functional alternative
require a number of adaptions due to the underlying geometric structure of the data.

In a future work we will consider extremity based measures for assessing local
signficance. is will be done by considering linear functional mixed-effects models in
a scale space representation (Lindeberg 1993), where the estimates are analyzed after
different amounts of spatial smoothing. By choosing a pointwise representation of the
fixed effect θ, one can calculate the distribution of the estimated effects on any scale. For
a given scale, one can use results from stochastic geometry on extrema of random fields
(Leadbetter et al. 1982), to locally measure the extremity (e.g. in terms of the expected
number of observations taking more extreme values) of the given estimate under the
null hypothesis of no local effect. By computing such measures across all scales, one can
do multi-scale segmentation (Olsen & Nielsen 1997) of extremity, to produce a robust
measure of the locally most extreme, and thus significant effects.

4.2.2 Non-Gaussian processes

In the literature on functional mixed-effects models, Gaussian processes seem to be the
universal choice for modelling functional random effects. In practice, however, data may
have structure that cannot be properly modeled in a Gaussian setting.

e approximations in Paper P.1 relied heavily on the fact that noise and random
effects were Gaussian. However, one can consider distributions that exhibit similar
structure. e class of elliptically contoured distributions (Cambanis et al. 1981) have
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probability densities of the form

p(y) =
1√
detΣ

g((y − θ)⊤Σ−1(y − θ)).

In this class of models, the multivariate generalized Laplace distribution (Kotz et al.
2001) seems particularly interesting for functional data analysis because of its robustness
and its sparsity-inducing properties. In order to derive operator approximations similar
to the ones in Paper P.1, we need covariances of the form Σ = Σ0 + I where Σ0 is
a functional covariance matrix. is covariance structure in connection with general
elliptically contoured distributions implies that we typically cannot construct models
with independent observation noise, but that there will be a layer of uncorrelated (but
not independent) noise in the random effect.

4.2.3 Models for shape data
As already mentioned, one major tasks ahead is to define mixed-effect models based on
random fields, and calculate the resulting likelihood functions in the setting of more
complex functional objects. We are currently considering model (1.5) for data on the
spherical domains S1 and S2. is extension will give a natural model for shape analysis,
which may provide likelihood based answers to some of the fundamental questions in
shape analysis. In particular, point correspondences to the observed shapes can be
automatically estimated, and the estimated variance of the warping function will give
an indication of the extent to which point correspondences are present in the data at
hand.

4.2.4 Constrained stochastic processes
e warping functions in Paper P.2 were modeled as coarsely observed Brownian motions
or bridges. Sample paths of these processes are nowhere monotone, nor are the predicted
processes necessarily monotone. As a result, we had to restrict the solution space to
homeomorphisms in Paper P.3. As previously mentioned, one approach of guaranteeing
diffeomorphic processes is to define them as solutions to certain stochastic transport
equations (Markussen 2007). is is however mathematically complex, and from a
modeling point of view, a class of monotone processes with known distribution would
be very convenient. We are currently considering this issue by defining classes of
diffeomorphic warping processes using a conditional hierarchical structure.
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Appendix A

Data registration with L1 data terms

1.1 Introduction

is appendix describes a framework for registering functional data using L1-norm data
terms. e content of this appendix is adapted from Rakêt et al. (2011) and Rakêt
(2013), and focusses on registration of the Glyphosate data described in Paper P.1. For
an extensive review of applications and extensions we refer to Rakêt (2013).

Let two functional samples I0, I1 : Rd → Rq be given. In the following we will
think of I0 and I1 as planar images, i.e. d = 2, but the presented methods are generally
applicable for any d. e problem we are considering is to compute a map v, such that
the difference between I1 warped with v and I0 is close to zero

I1(x+ v(x))− I0(x) ≈ 0. (A.1)

Solving (A.1) equal to zero is problematic in a number of ways. It is generally ill-posed;
images often have one-dimensional values, and for each point x we need to estimate
a two-dimensional displacement vector v(x). In addition the problem is nonlinear.
To address these issues, a common approach is to linearize equation (A.1) by means
of its first order Taylor approximation in v. So-called local methods assume that the
displacement v(x) is similar in a neighborhood of x, which typically gives enough
linear independent equations in the channels of v for proper estimation (Lucas &
Kanade 1981). In contrast global methods typically use a pointwise data term based on
the linearization of (A.1), but adds a regularization term, that penalizes erratic behavior
of v, giving an energy that must be minimized in order to estimate v (Horn & Schunck
1981). Here we will focus on global methods in a setup inspired by the so-called
duality-based optical flow method (Zach et al. 2007).
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1.2 Energy formulation and estimation
Given a subdomain T ⊆ Rd containing all data values and two images I0, I1 : T →
Rq, we want to estimate the warping function v : T → T that aligns I1 to I0. We
will consider a variational approach where the flow v is estimated as a minimizer of an
energy on the form

E(v) = λ

∫
T

∥I1(x+ v(x))− I0(x)∥ dx+G(v) (A.2)

where G acts as a regularization term on the warp.
Here we will focus on a half-quadratic relaxation of the problem, and consider the

minimization methods in this framework. e relaxed energy is obtained by introducing
an auxiliary variable, effectively splitting the minimization problem in two quadratically
coupled problems

E(u, v) = λ

∫
T

∥I1(x+ v(x))− I0(x)∥ dx+
1

2θ

∫
T

∥v(x)− u(x)∥2 dx+G(u).

(A.3)

As θ → 0 a minimizer of (A.3) will also minimize (A.2). e hope of this relaxation is
that for θ small, a minimizer of the relaxed energy (A.3) will be close to a minimizer
of the original energy (A.2).

It may seem troublesome to introduce an auxiliary variable, since one has to iteratively
minimize the two energies

E1(v) = λ

∫
T

∥I1(x+ v(x))− I0(x)∥ dx+
1

2θ

∫
T

∥v(x)− u(x)∥2 dx, (A.4)

E2(u) =
1

2θ

∫
T

∥v(x)− u(x)∥2 dx+G(u), (A.5)

instead of just a single one. e splitting method, however, has the advantage that
the two subproblems (A.4) and (A.5) are often much easier to solve than the original
energy (A.2). is is because E1 can be solved pointwise, and for a wide variety of
regularization terms G, E2 takes the form of a standard denoising problem for which
efficient solvers are available (Scherzer et al. 2008). Another positive feature is that
data-matching and regularization are done independently, so one can easily replace one
without changing the minimization of the other—a fact that makes comparison of
different types of energies straightforward.

In the following section we will consider the minimization of the energy (A.4). In
order to minimize this energy, we iteratively linearize the data term by its first order
Taylor approximation around the current estimates v0

x

I1(x+ v(x))− I0(x) ≈ I1(x+ v0
x) + JI1(x+ v0

x)(v(x)− v0
x)− I0(x)
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where JI1(x) is the Jacobian at I1(x). is procedure is known as warping, and has
been theoretically justified by Brox et al. (2004), who show that the warping method
corresponds to minimizing an energy with non-linearized data terms using two nested
fixed-point iterations. To recover large deformations and accelerate the solution scheme
we do the minimization in a coarse-to-fine framework. While it is possible to directly
target the original energy (A.4), the current methods to do so are typically slower and
produce inferior results (Steinbrücker et al. 2009).

1.2.1 Minimizing affine L1-L2 energies
Consider an L1-L2 energy on the form

E1(v) = λ

∫
T

∥Axv(x) + b(x)∥ dx+
1

2

∫
T

∥v(x)− u(x)∥2 dx (A.6)

where Ax : Rd → Rq. e minimization of (A.6) boils down to pointwise minimization
of a strictly convex cost function of the form

f(v) = λ∥Av + b∥+ 1

2
∥v − u∥2. (A.7)

In the following we present the tools used for solving the minimization problem (A.7).
We start by recalling some elements of convex analysis, the reader can refer to Ekeland
& Teman (1999) for a complete introduction to convex analysis in both finite and
infinite dimension. Here we will restrict ourselves to finite dimensional problems.

A function f : Rd → R is one-homogeneous if f(λx) = λf(x), for all λ > 0. For
a one-homogeneous function, it is easily shown that its Legendre-Fenchel transform

f ∗(x∗) = sup
x∈Rd

{⟨x,x∗⟩ − f(x)} (A.8)

is the characteristic function of a closed convex set C of Rd,

dC(x
∗) := f ∗(x∗) =

{
0 if x∗ ∈ C,

+∞ otherwise.
(A.9)

e one-homogeneous functions that will interest us here are of the form f(x) = ∥Ax∥
where A : Rd → Rq is linear, and ∥ · ∥ is the usual Euclidean norm of Rq.

e following lemma characterizes the Legendre-Fenchel transform of f(x).

Lemma A.1. e Legendre-Fenchel tranform of x 7→ ∥Ax∥ is the characteristic function
dC of the elliptic ball C given by the set of x’s in Rd that satisfy the following conditions

A†Ax = x (A.10)
x⊤A†A†⊤x ≤ 1, (A.11)

where A† denotes the Moore-Penrose pseudoinverse of A.



90 APPENDIX A. DATA REGISTRATION WITH L1 DATA TERMS

It is well known that A†A is the orthogonal projection onto KerA⊥, so the equality
x = A†Ax means that x belongs to KerA⊥. On this subspace, A†A†⊤ is positive
definite and the inequality thus defines an elliptic ball.

e lemma will not be proven here, but we indicate how it can be done. In the
case where A is the identity Id of Rd, it is easily shown that C is the unit sphere of Rd.
e case where A is invertible follows easily, while the general case follows from the
latter using the structure of pseudoinverse (see Golub & van Loan 1989 for instance).

e following proposition gives the minimizer of the energy (A.6).

Proposition A.1. e minimizer of the function

f(v) = λ∥Av + b∥+ 1

2
∥v − u∥2

is given as follows.

(i) In the case b ̸∈ ImA, f is smooth. It can be minimized by usual methods.

(ii) In the case b ∈ ImA, f , which is not smooth for v ∈ KerA + A†b, reaches its
unique minimum at

v = u− πλC

(
u+ A†b

)
(A.12)

where πλC is the projection onto the convex set λC = {λx, x ∈ C}, with C as
described in Lemma A.1.

Proof. To see (i), write b as Ab0 + b1, with b0 = A†b, Ab0 being the orthogonal
projection of b onto ImA, while b1 is the residual of the projection. e assumption
of (i) implies that b1 ̸= 0 is orthogonal to the image of A. One can then write

∥Av + b∥ = ∥A(v + b0) + b1∥ =
√
∥A(v + b0)∥2 + ∥b1∥2 (A.13)

which is always strictly positive as ∥b1∥2 > 0, and smoothness follows.
In the case of (ii), since b ∈ ImA, we can substitute v ← v + A†b in function

(A.7) and the resulting function has the same form as a number of functions found
in Chambolle (2004) and Chambolle & Pock (2011). We refer to these works for the
computation of minimizers in terms of the Legendre-Fenchel transform.

Example A.1. Consider the minimization problem

argmin
v

(
λ∥Av + b∥+ 1

2
∥v − u∥2

)
, λ > 0. (A.14)

where A ∈ Rq×2 and b ∈ ImA. If A has maximal rank (i.e. 2), then is is well known
that the 2×2 matrix C = A†A†⊤ is symmetric and positive definite (Golub & van Loan
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1989). e set C is then an elliptic disc determined by the eigenvectors and eigenvalues
of C. e projection can be computed by the efficient algorithm described in Example
A.3, which has much better properties than the method originally suggested in Rakêt
et al. (2011).

When the matrix has two linearly dependent columns a ̸= 0 and ca, a series of
straightforward calculations give

KerA = Ry, KerA⊥ = Rx, ImA = Ra (A.15)

with x = 1
1+c2

(1, c)⊤ and y = 1
1+c2

(−c, 1)⊤, and

A†A†⊤ =
1

(1 + c2)2∥a∥2

(
1 c

c c2

)
. (A.16)

If c = 0, the inequality (A.11) from Lemma A.1, just amounts to

−∥a∥ ≤ u1 ≤ ∥a∥, u = (u1, u2)
⊤, (A.17)

while equality (A.10) in Lemma A.1 simply says that u2 = 0, thus C is the line segment

[−∥a∥x, ∥a∥x] ⊂ R2. (A.18)

e case where c ̸= 0 is identical, and obtained for instance by rotating the natural
basis of R2 to the basis (x,y). ◦

Example A.2. Consider again the minimization problem (A.14), but this time assuming
that b /∈ ImA. Using (A.13) we can rewrite the minimization problem as

argmin
v

(
λ
√
∥A(v + b0)∥2 + ∥b1∥2 +

1

2
∥v − u∥2

)
, λ > 0. (A.19)

e minimizing v is found by solving the equation

λ
A⊤A(v + b0)

∥Av + b∥
+ v − u = 0

which may be done by gradient descent or a (quasi-)Newton method. ◦

Example A.3. Consider the problem of projecting a point x0 onto the ellipsoid given
by

C = {x ∈ Rq |x⊤Cx ≤ 1},
where x0 /∈ C. e projected point x̂ can be found as

x̂ = argmin
x∈C

∥x− x0∥2.
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is problem can be reformulated by introducing a Lagrange multiplier ξ, giving the
objective function

f(x, λ) = ∥x− x0∥2 + ξ(x⊤Cx− 1).

From the condition that

∂

∂x
f(x, ξ) = 2(x− x0) + 2ξCx = 0,

we get that
x̂ = (ξC + I)−1x0.

However we need to determine the value of the Lagrange multiplier ξ. Since we
assumed that x0 was outside the ellipsoid, we know that the projected point will lie on
the boundary of the ellipsoid ∂C, which means that ξ is a root of

G(ξ) = ((ξC + I)−1x0)
⊤C(ξC + I)−1x0 − 1. (A.20)

We can use the following theorem due to Kiseliov (1994) to determine the correct
value of ξ.

eorem A.1. e root ξ∗ of the function (A.20) is unique and can be found by the
iterative Newton process

ξ0 = 0, ξn+1 = ξn −
G(ξn)

G′(ξn)
,

where ξk ↑ ξ∗. e rate of convergence is quadratic.

Kiseliov (1994) in addition gives a nonlinear version of the Newton process described
in the above theorem, which is even more efficient. Compared to the added complexity
of the implementation, the overall gain of using such an algorithm is limited, and we
will recommend the process described here. ◦

1.3 Algorithm
In this section we describe a general algorithmic framework for estimating the warping
function from energies on the form (A.3). e duality-based approach has good com-
putational properties, because the solutions to the two sub-energies can often be done
in parallel. is makes the algorithm well-suited for massively parallel processors.

e structure of the algorithm is depicted in Algorithm A.1. e different choices
made in the algorithm build on a foundation of practices that has been shown to improve
accuracy in optical flow estimation (Sun et al. 2010). e steps of the algorithm are
described below.
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Data: Two images I0 and I1
Result: e warping function v
for ℓ = ℓmax to 0 do

// Pyramid levels
Downsample the images I0 and I1 to current pyramid level
for w = 0 to wmax do

// Warping
Compute v as the minimizer of E1 (A.4)
for i = 0 to imax do

// Inner iterations
Compute u as the minimizer of E2 (A.5)

end
Upscale v and u to next pyramid level

end
end

Algorithm A.1: Computation of warping function.

Pyramid An image pyramid is built, where on each level, prior to downsampling to
the next pyramid level, the images are smoothed with a Gaussian kernel of standard
deviation σ. e downsampling is done by means of linear interpolation. Evaluation at
non-pixel positions in images is done by bicubic interpolation.

Warping At the beginning of each warp, the image I1 is warped according to the
current estimate of the flow v.

Upscaling Flows are upscaled using linear interpolation, and their values are divided
by the downscale factor of the pyramid, in order for vector lengths to match the current
image size. is is followed by an application of a 3 × 3 median filter which slightly
increase convergence (Sun et al. 2010).

1.4 Registration of 2D chromatograms
Chromatography is a process for separating mixtures. One use of chromatography is
measuring relative proportions of analytes in a number of mixtures, to determine differ-
ences. An example of a 2D chromatogram is shown in Figure A.1. e chromatograms
we are considering have been generated using ultra-high-performing liquid chromatog-
raphy with diode-array-detection (Petersen et al. 2011). e chromatograms consists of
209 wavelengths each measured at 24,000 retention times. e subject of the analysis is
rapeseed seedlings having been exposed to different levels glyphosate (commonly known
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Figure A.1: Example of a chromatogram along with the absorbance (A.U.) curves
corresponding to two fixed wavelengths.

as Roundup®).
e images arising from this procedure will have shifts in retention time, but because

of the experimental setup, no such shifts occur in the wavelength dimension. is means
that we have a one-dimensional registration problem for a two-dimensional image.

Figure A.2 depicts the absorbance as a function of retention time for a single wave-
length in four chromatograms. e retention time shifts are clearly visible. Furthermore
there seem to be a varying detector sensitivity, resulting in some of the curves consis-
tently having higher peaks that others. Finally there are small variations that cannot
be explained by the mentioned issues, and which can be ascribed to serially correlated
effects and noise.

Retention time

A
bs

or
ba

nc
e

Figure A.2: A range of retention times for a single wavelength for four chromatograms.
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1.4.1 Registration algorithm
Given two chromatograms I0, I1 : T → R of size n1 × n2, where T = Tw × Tt,
consider the problem of estimating the disparity v : Tt → Tt such that I1(w, t+ v(t))
is properly registered to I0(w, t).

From the point of view of Section A the natural formulation of the data term is as
a vector valued problem. Let

I i(t) =

 Ii(w1, t)
...

Ii(wn1 , t)

 .

e warping constraint may then be written as

I1(t+ v(t))− I0(t) ≈ 0.

Linearizing this around a given estimate v0, we get the following system of equations

∂tI1(t+ v0)
a

v(t)−∂tI1(t+ v0)v0 + I1(t+ v0)− I0(t)

b

= 0.

Considering an L1-norm of this linearization of this data term, we see that the case (ii)
of Proposition A.1 is very easily calculated, however, it seems unlikely that it will ever
be the case that b ∈ Ima for just a moderate number of wavelengths. is means that
we will almost surely be in the less attractive case (i) where we have to minimize by
some iterative procedure.

Instead we will consider an alternative registration method for this dataset. e idea
is to treat the one-dimensional vector valued registration problem as a two-dimensional
problem, and couple the different vector channels through the regularization rather than
through the data term. e method is generally applicable, and works by posing a d
dimensional registration problem with data taking values in a q dimensional space, as
a one-dimensional registration problem on a d + 1 dimensional domain. is is done
by treating the vector channels as an added dimension to the domain. is way the
regularization will be d+1 dimensional, and by enforcing strong (or increasing) weight
on the regularity across this new dimension, information is propagated between the
different channels of the image to produce a warping function that is homogeneous
along the new dimension.

As described above, we start out by estimating disparities for each wavelength. In the
given example we are interested in a robust L1-norm for the data term. e robustness is
important because of the varying detector sensitivity and serially correlated effects, where
for example an L2-norm may cause problems in relation to outliers. For regularization,
we are interested in a term that, in addition to imposing regularity on the estimated
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disparities, regularize across wavelengths. Since one would expect drifts in retention time
to be continuous, the warp should be smooth, and therefore we will regularize using
the squared gradient magnitude. e energy to be minimized looks as follows

E(v) = λ

∫
T

∥I1(w, t+ vw(t))− I0(w, t)∥ dw dt+
∫

T

∥∇w,tvw(t)∥2 dt.

is functional is minimized as described in the previous sections, where the data term is
iteratively approximated by its first-order Taylor approximation around the given estimate
vw0

ρ(v)(w, t) = ∂tI1(w, t+ vw0 (t))(v(t)− vw0 (t)) + I1(w, t+ vw0 (t))− I0(w, t).

Furthermore data fidelity and regularization are decoupled by means of a quadratic
proximity term

E(v,u′) = λ

∫
T

∥ρ(vw)(w, t)∥ dw dt

+
1

2θ

∫
T

∥vw(t)− uw(t)∥2 dt+
∫

T

∥∇w,tuw(t)∥2 dt

where θ is sufficiently small. Using Proposition A.1, the pointwise solution in vw is
found to be

vw(t) = uw(t)− λθ


−∂tI1(w, t+ vw0 (t)) if ρ(v)(w,t)

λθ
< −|∂tI1(w, t+ vw0 (t))|2

∂tI1(w, t+ vw0 (t)) if ρ(v)(w,t)
λθ

> |∂tI1(w, t+ vw0 (t))|2
ρ(v)(w,t)

∂tI1(w,t+vw0 (t))
if |ρ(v)(w,t)|

λθ
≤ |∂tI1(w, t+ vw0 (t))|2

.

e problem in uw is a Tikhonov regularization problem that can be solved using
standard methods. e weighting of the finite difference approximation of the derivative
in the wavelength dimension is used to control the homogeneity of the solution across
wavelengths. In the presented setup we found that a weighting factor of 10 produced
good results. E is minimized iteratively in a coarse-to-fine manner, where the input
images and the corresponding disparities are gradually upsampled in the retention time
dimension, but the wavelength dimension is kept at its original size. Following Algorithm
A.1 we use ℓmax = 160 pyramid levels and a scaling factor between levels of 0.97, yielding
a downsampling factor at the coarsest level of approximately 130. e standard deviation
of the Gaussian kernel used for smoothing was set to σ =

√
2
4
. wmax = 100 warps are

performed at each level using imax = 20 inner iterations, and λ was set to 60, while θ
was fixed at 0.1.

e algorithm has been implemented in CUDA C in order to take advantage of the
thousands of cores on modern GPUs.
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Figure A.3 shows the individual wavelength warping curves (gray) of the described
method with the average plotted on top (red) for two 2D chromatograms. To illustrate
the effect of the weighting of the finite differences in the wavelength dimension the
result of a weighting factor of 0 (i.e. registering each wavelength independently) and 10
are shown. As can be seen, the higher weighting factor results in successful propagation
of information across wavelengths, producing a uniform result along the wavelength
dimension. e independent registration produces much more variable results, which
results in a smoother average registration curve with fewer details.

Independent registration of wavelengths

Dependent registration of wavelengths

Figure A.3: Warping functions vw for all individual wave lengths w (gray) with the
average registration plotted on top (red).

e average registration is used as the final single disparity v : t→ t. e registration
was then done by warping the chromatograms according to v for each wavelength. e
result of the registration procedure on the data in Figure A.2 can be found in Figure
A.4. is plot suggests that data is very well aligned after registration.
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Figure A.4: e chromatograms from Figure A.2 registrated along retention time.
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